Answer:
93.32% probability that a randomly selected score will be greater than 63.7.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What is the probability that a randomly selected score will be greater than 63.7.
This is 1 subtracted by the pvalue of Z when X = 63.7. So



has a pvalue of 0.0668
1 - 0.0668 = 0.9332
93.32% probability that a randomly selected score will be greater than 63.7.
Answer:
See explanation
Step-by-step explanation:
Given a long algebraic equation, the like terms can be collected. When you collect like terms, you reduce the length of the algebraic equation.
After that, you can factorize the equation where possible. When you factorize the equation. It becomes quite easier to solve it efficiently.
A is (2, -1)
The X axis will not change since A is not going left or right of (2,2). You would count down 3 spaces for the y-axis and that would land you at -1 or you could solve by subtraction.
2-3= -1
The equation is put in slope intercept form which is y=mx+b
The slope is m and in this case it is -1/2.
To find the y intercept substitute in 0
for x then solve.
