Answer:
B) As you move across the row, the number of electrons increases and reactivity also increases.
Explanation:
The periodic table is arranged in a way that if you go across a period, the number of protons, neutrons, and electrons in an element increases. In terms of reactivity, the most reactive elements are the ones which have a high electronegativity. The electronegativity of the elements increases as you travel to the right and upwards on the periodic table.
The fluorine atom has a neutron number of 10 it also have 10 valence electrons
Injecting salt crystals over the ocean to grow cloud droplets has been proposed in efforts to make the clouds brighter thereby affecting the radiation budget. The light of the sun shines on Earth, some of that light is reflected by the clouds back to space and some of the light reaches the earth and warms our planet. The earth and the hot oceans emit infrared radiation (IR), which we feel as heat. That IR "light"; returns to space through the atmosphere. Most are trapped by greenhouse gases, which keep the earth warm. Soon after, the IR radiation returns to space. Scientists call this "energy budget of the Earth" this cycle of incoming and outgoing energy.
Answer: The final temperature will be
Explanation:
To calculate the specific heat of substance during the reaction.
where,
q = heat absorbed =41840 J
c = specific heat =
m = mass of water = 200 g
= final temperature =?
= initial temperature =
Now put all the given values in the above formula, we get:
Thus the final temperature will be
Answer:
An elementary particle can be one of two groups: a fermion or a boson. Fermions are the building blocks of matter and have mass, while bosons behave as force carriers for fermion interactions and some of them have no mass. The Standard Model is the most accepted way to explain how particles behave, and the forces that affect them. According to this model, the elementary particles are further grouped into quarks, leptons, and gauge bosons, with the Higgs boson having a special status as a non-gauge boson.