Answer : The correct option is, (D) 3600 kJ
Explanation :
Mass of octane = 75 g
Molar mass of octane = 114.23 g/mole
Enthalpy of combustion = -5500 kJ/mol
First we have to calculate the moles of octane.

Now we have to calculate the heat released in the reaction.
As, 1 mole of octane released heat = -5500 kJ
So, 0.656 mole of octane released heat = 0.656 × (-5500 kJ)
= -3608 kJ
≈ -3600 kJ
Therefore, the heat released in the reaction is 3600 kJ
Answer:
Reaction 1 is balanced but 2 is not balanced , the balance equation are :
1. 
2.
Explanation:
Balanced Equations : These are the equation which follows the law of conservation of mass .
The total number of atoms present in reactant is equal to total number of atoms present in product.
1. 
This is acid - base type reaction where
act as Acid
act as weak base
Reactant :
,
Number of atoms of :
C = 2 (
) + 1 (
)
= 2 + 1
= 3
H = 4(
) + 1 (
)
= 4 + 1
5
O = 2(
) + 3 (
)
= 5
Na = 1 (
)
= 1
Product :
,
, 
Number of atoms :
C = 1(
) + 2(
)
= 1 + 2
= 3
H = 2(
) + 3(
)
= 2 + 3
= 5
O = 1(
) + 2(
)
+2(
= 1 + 2 + 2
= 5
Na = 1(
= 1
Number of Na =1 , C = 3 , H= 5 and O =5 in both reactant and product , so it is a balanced reaction
2.
This is double displacement reaction .
Check the balancing in both reactant and products should be :
Na = 2
H = 2
Ca = 1
C = 2
O = 6
Cl = 2
Explanation:
According to the given data, we will calculate the following.
Half life of lipase
= 8 min x 60 s/min
= 480 s
Rate constant for first order reaction is as follows.
=
Initial fat concentration
= 45
= 45 mmol/L
Rate of hydrolysis
= 0.07 mmol/L/s
Conversion X = 0.80
Final concentration (S) =
= 45 (1 - 0.80)
= 9
or, = 9 mmol/L
It is given that
= 5mmol/L
Therefore, time taken will be calculated as follows.
t = ![-\frac{1}{K_{d}}ln[1 - \frac{K_{d}}{V}{K_{M} ln (\frac{S_{o}}{S}) + (S_{o} - S)]](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7BK_%7Bd%7D%7Dln%5B1%20-%20%5Cfrac%7BK_%7Bd%7D%7D%7BV%7D%7BK_%7BM%7D%20ln%20%28%5Cfrac%7BS_%7Bo%7D%7D%7BS%7D%29%20%2B%20%28S_%7Bo%7D%20-%20S%29%5D)
Now, putting the given values into the above formula as follows.
t =
= ![-\frac{1}{1.44 \times 10^{-3}s^{-1}}ln[1 - \frac{1.44 \times 10^{-3}s^{-1}}{0.07 mmol/L/s }{K_{M} ln (\frac{45 mmol/L }{9 mmol/L }) + (45 mmol/L - 9 mmol/L )]](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B1.44%20%5Ctimes%2010%5E%7B-3%7Ds%5E%7B-1%7D%7Dln%5B1%20-%20%5Cfrac%7B1.44%20%5Ctimes%2010%5E%7B-3%7Ds%5E%7B-1%7D%7D%7B0.07%20mmol%2FL%2Fs%0A%7D%7BK_%7BM%7D%20ln%20%28%5Cfrac%7B45%20mmol%2FL%0A%7D%7B9%20mmol%2FL%0A%7D%29%20%2B%20%2845%20mmol%2FL%20-%209%20mmol%2FL%0A%29%5D)
= 
= 27.38 min
Therefore, we can conclude that time taken by the enzyme to hydrolyse 80% of the fat present is 27.38 min.
A chemical equation is a short hand expression of a chemical reaction. There aretwo<span> parts to a chemical equation. The reactants are the elements or compounds on the left side of the arrow (-->). The elements and compounds to the right of the arrow are the products.</span>