1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex787 [66]
4 years ago
12

When 5 is added to a set of 3 numbers the mean increases to 4.6. What was the mean of the original 3 numbers?

Mathematics
1 answer:
SVEN [57.7K]4 years ago
7 0
<h3>♫ - - - - - - - - - - - - - - - ~Hello There!~ - - - - - - - - - - - - - - - ♫</h3>

➷  Multiply 4.6 by 4 to get the sum of the numbers after 5 was added:

4.6 x 4 = 18.4

^ This is the new total

Subtract 5 from this:

18.4 - 5 = 13.4

Divide this value by 3 to get the original mean:

13.4/3 = 67/15

<h3><u>✽</u></h3>

➶ Hope This Helps You!

➶ Good Luck (:

➶ Have A Great Day ^-^

↬ ʜᴀɴɴᴀʜ ♡

You might be interested in
Which represents the solution set of 5 (x + 5) less-than 85 x less-than 12 x greater-than 12 x less-than 16 x greater-than 16
Sonbull [250]

For this case we must find the solution of the following inequality:

5 (x + 5)

Applying distributive property on the left side of inequality we have:

5x + 25

Subtracting 25 from both sides of the inequality we have:

5x

Dividing between 5 on both sides of the inequality we have:

x

Thus, the solution is given by all values of x less than 12.

Answer:

x

7 0
3 years ago
Read 2 more answers
Find the common difference of the arithmetic sequence 12,17,22
elena-14-01-66 [18.8K]

To find the common difference, we use the formula a2 - a1 where

<em>a2</em> represents the second term and <em>a1</em> represents the first term.

So plugging the second term and first term into

the formula, we have (17) - (12) which is 5.

So the common difference of

this arithmetic sequence is 5.

5 0
3 years ago
Read 2 more answers
Can someone please give me this answer and hurry
romanna [79]

Answer:

113.04cm

............

7 0
3 years ago
The cost of labor for servicing cars at B&amp;B Automotive is $50 for each whole hour or for any fraction of an hour. There is a
Masja [62]

Answer:

<h2>d. $250</h2>

Step-by-step explanation:

We can use the equation of a straight line to model the cost of servicing the car.

let the cost be y and the number of hours be x

and the charge per hour is m

y=mx+c

y=50x+25

given that the time is 3.45 hours it is assumed that the charge is for 4 hours since for a fraction of 0.45 hours we are charged $50

y=50(4)+25

y=200+25

y=$225

4 0
4 years ago
Suppose you are climbing a hill whose shape is given by the equation z = 900 − 0.005x2 − 0.01y2, where x, y, and z are measured
Kazeer [188]

Answer:

Ascend

Step-by-step explanation:

In order to solve this problem, we are going to use some principles of vector calculation. The concepts we are going to use are Partial derivatives, gradient vector, velocity vector, direction vector, and directional derivative.

The gradient vector is a vector that describes how is the 'slope' in the space of a multivariable function at a specified point; it is built as a vector of partial derivatives. The vector velocity is a vector that describes the direction and speed of the movement of a body, if we make the velocity a unitary vector (a vector whose norm is 1), we obtain the direction vector (because we are not considering the real norm of the vector, just direction). Finally, the directional derivative is a quantity (a scalar) that describes the slope that we get on a function if we make a displacement from a particular point in a specific direction.  

The problem we have here is a problem where we want to know how will be the slope of the hill if we stand in the point (120, 80, 764) and walk due south if the hill has a shape given by z=f(x,y). As you see, we have to find the directional derivative of z=f(x,y) at a specific point (120, 80, 764) in a given displacement direction; this directional derivative will give us the slope we need. The displacement direction 'u' is (0,-1): That is because 'y' axis points north and our displacement won't be to the east either west (zero for x component), just to south, which is the opposite direction of that which the y-axis is pointing (-1 for y component). Remember that the direction vector must be a unitary vector as u=(0,-1) is.

Let's find the gradient vector:

z=900-0.005x^2-0.01y^2\\\frac{\partial z}{\partial x}=-0.005*2*x=-0.01x\\\frac{\partial z}{\partial y}=-0.01*2*y=-0.02y\\ \nabla (z)=(-0.01x,-0.02y)

Evaluate the gradient vector at (120,80) (764 is z=f(120,80); you may confirm)

\nabla (z(120,80))=(-0.01*120,-0.02*80)=(-1.2,-1.6)

Finally, find the directional derivative; if you don't remember, it can be found as a dot product of the gradient vector and the direction vector):

D_{u,P_0}= \nabla (z)_{P_0}\cdot u\\D_{u,P_0}= (-1.2,-1.6)\cdot (0,-1)=1.6

As you see, the slope we find is positive, which means that we are ascending at that displacement direction.

8 0
3 years ago
Other questions:
  • Lurinda ordered some boxes of greeting cards online. The cost of the cards is $6.50n plus $3 where n is the number of boxes and
    6·2 answers
  • The condition of the car and its mileage are important variables to consider when making a decision to buy a used car.
    11·2 answers
  • Maria spent $12.50 at the post office. She bought three times as many $0.41 stamps as $0.02 stamps. How many of each did she buy
    13·1 answer
  • A state park charges $5 per car plus $1 per person as an admission fee. The total charged for a car with x people is f(x) = x +
    11·1 answer
  • Solve 5^(2x+1) = 25 in logarithmic form
    6·1 answer
  • If EF = 5w + 20, FG = 7w + 28, and EG = 72, find the value of w. Find EF and FG
    9·1 answer
  • Number 9 -_- like what is this
    11·2 answers
  • Pls helppppppppppp
    15·2 answers
  • PLEASE HELP WITH THIS!
    12·1 answer
  • If vector u has its initial point at (-7, 3) and its terminal point at (5, -6), u = i + j.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!