Answer:
hmmmmmmmmmmmmmmm
62
Step-by-step explanation:
Answer:
8/38
Step-by-step explanation:
You got it right, trust yourself
To find the 20th term in this sequence, we can simply keep on adding the common difference all the way until we get up to the 20th term.
The common difference is the number that we are adding or subtracting to reach the next term in the sequence.
Notice that the difference between 15 and 12 is 3.
In other words, 12 + 3 = 15.
That 3 that we are adding is our common difference.
So we know that our first term is 12.
Now we can continue the sequence.
12 ⇒ <em>1st term</em>
15 ⇒ <em>2nd term</em>
18 ⇒ <em>3rd term</em>
21 ⇒ <em>4th term</em>
24 ⇒ <em>5th term</em>
27 ⇒ <em>6th term</em>
30 ⇒ <em>7th term</em>
33 ⇒ <em>8th term</em>
36 ⇒ <em>9th term</em>
39 ⇒ <em>10th term</em>
42 ⇒ <em>11th term</em>
45 ⇒ <em>12th term</em>
48 ⇒ <em>13th term</em>
51 ⇒ <em>14th term</em>
54 ⇒ <em>15th term</em>
57 ⇒ <em>16th term</em>
60 ⇒ <em>17th term</em>
63 ⇒ <em>18th term</em>
66 ⇒ <em>19th term</em>
<u>69 ⇒ </u><u><em>20th term</em></u>
<u><em></em></u>
This means that the 20th term of this arithemtic sequence is 69.
We compute for the side lengths using the distance formula √[(x₂-x₁)²+(y₂-y₁)²].
AB = √[(-7--5)²+(4-7)²] = √13
A'B' = √[(-9--7)²+(0-3)²] = √13
BC = √[(-5--3)²+(7-4)²] = √13
B'C' = √[(-7--5)²+(3-0)²] =√13
CD = √[(-3--5)²+(4-1)²] = √13
C'D' = √[(-5--7)²+(0--3)²] = √13
DA = √[(-5--7)²+(1-4)²] = √13
D'A' = √[(-7--9)²+(-3-0)²] = √13
The two polygons are squares with the same side lengths.
But this is not enough information to support the argument that the two figures are congruent. In order for the two to be congruent, they must satisfy all conditions:
1. They have the same number of sides.
2. All the corresponding sides have equal length.
3. All the corresponding interior angles have the same measurements.
The third condition was not proven.
Answer:
this answer is. _48 am I right