Part 1:
For this case we must see in the graph the axis of symmetry of the given parabola.
We have then that the axis of symmetry is the vertical line t = 2.
Answer:
The height of the javelin above the ground is symmetric about the line t = 2 seconds:
Part 2:
For this case, we must see the time t for which the javelin reaches a height of 20 feet for the first time.
We then have that when evaluating t = 1, the function is h (1) = 20. To do this, just look at the graph.
Then, we must observe the moment when it returns to be 20 feet above the ground.
For this, observing the graph we see that:
h (3) = 20 feet
Therefore, a height of 20 feet is again reached in 3 seconds.
Answer:
The javelin is 20 feet above the ground for the first time at t = 1 second and again at t = 3 seconds
For two complex numbers

and

, the product is

That is, you multiply the moduli and add the arguments. You have

and

, so the product is
With these, always write out the multiples first.
Start like this:
(assume one of the factors is negative)
1 and 1120
2 and 560
4 and 280
5 and 224
7 and 160
8 and 140
10 and 112
14 and 80
16 and 70
20 and 56
28 and 40
32 and 35
from those, the obvious choice is the one with a difference of three. In this case, 32 and 35, because -32 + 35 equals 3.
To simplify
![\sqrt[4]{\dfrac{24x^6y}{128x^4y^5}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cdfrac%7B24x%5E6y%7D%7B128x%5E4y%5E5%7D%7D)
we need to use the fact that
![\sqrt[4]{x^4}=|x|](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E4%7D%3D%7Cx%7C)
Why the absolute value? It's because
.
We start by rewriting as
![\sqrt[4]{\dfrac{2^23x^6y}{2^6x^4y^5}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cdfrac%7B2%5E23x%5E6y%7D%7B2%5E6x%5E4y%5E5%7D%7D)
![\sqrt[4]{\dfrac{2^23x^4x^2y}{2^42^2x^4y^4y}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cdfrac%7B2%5E23x%5E4x%5E2y%7D%7B2%5E42%5E2x%5E4y%5E4y%7D%7D)
Since
, we have
, and the above reduces to
![\sqrt[4]{\dfrac{3x^2y}{2^4y^4y}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cdfrac%7B3x%5E2y%7D%7B2%5E4y%5E4y%7D%7D)
Then we pull out any 4th powers under the radical, and simplify everything we can:
![\dfrac1{\sqrt[4]{2^4y^4}}\sqrt[4]{\dfrac{3x^2y}{y}}](https://tex.z-dn.net/?f=%5Cdfrac1%7B%5Csqrt%5B4%5D%7B2%5E4y%5E4%7D%7D%5Csqrt%5B4%5D%7B%5Cdfrac%7B3x%5E2y%7D%7By%7D%7D)
![\dfrac1{|2y|}\sqrt[4]{3x^2}](https://tex.z-dn.net/?f=%5Cdfrac1%7B%7C2y%7C%7D%5Csqrt%5B4%5D%7B3x%5E2%7D)
where
allows us to write
, and this also means that
. So we end up with
![\dfrac{\sqrt[4]{3x^2}}{2y}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B4%5D%7B3x%5E2%7D%7D%7B2y%7D)
making the last option the correct answer.
9*9=81. So Kurt baked 81 cookies.