1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vesnalui [34]
4 years ago
7

What percentage of the Department of Transportation's budget is for winter road maintance?

Advanced Placement (AP)
1 answer:
mel-nik [20]4 years ago
5 0
<span>The percentage of the Department of Transportation's budget is for winter road maintenance is 20%..State DOTs (Department of Transportation) in snowy regions spend more of their budget on clearing roads during the winter season.The high percentage of the budget is necessary to reduce accidents due to loss of friction between roads and automobile tires, and to repair damage to roads. Even with this high spending rate, many accidents occur in the winter because of poor visibility and loss of traction due to slipping of automobiles.</span>
You might be interested in
How does James Madison high schools mission statement define a student?
Korolek [52]

JMHS empowers students to achieve their aspirations through flexible, convenient, affordable, and highly relevant educational programs.

it more describes the school itself then the students

7 0
3 years ago
Read 2 more answers
Someone join my virtual zoom class im kinda lonely lol<br><br> 981-2825-5465<br><br> C8eGHB
mart [117]
If u help me with my advanced English lang work
7 0
3 years ago
Read 2 more answers
Established in 1967 in Thailand with more than 500 million members, one of the largest regional markets in the world is
Serggg [28]
Established in 1967 in Thailand with more than 500 million members, one of the largest regional markets in the world is  ASEAN.<span> ASEAN stands for Association of South East Asian Nations. It is a </span>regional intergovernmental organization with 10 members and it's <span><span>the world’s third largest market. </span> </span>
4 0
4 years ago
Solve the following differential equation with initial conditions: y''=e^-2t+10e^4t ; y(0)=1, y'(0)=0​
skad [1K]

Answer:

Option A.  y = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}

Explanation:

This is a second order DE, so we'll need to integrate twice, applying initial conditions as we go.  At a couple points, we'll need to apply u-substitution.

<u>Round 1:</u>

To solve the differential equation, write it as differentials, move the differential, and integrate both sides:

y''=e^{-2t}+10e^{4t}

\frac{dy'}{dt}=e^{-2t}+10e^{4t}

dy'=[e^{-2t}+10e^{4t}]dt

\int dy'=\int [e^{-2t}+10e^{4t}]dt

Applying various properties of integration:

\int dy'=\int e^{-2t} dt + \int 10e^{4t}dt\\\int dy'=\int e^{-2t} dt + 10\int e^{4t}dt

Prepare for integration by u-substitution

\int dy'=\int e^{u_1} dt + 10\int e^{u_2}dt, letting u_1=-2t and u_2=4t

Find dt in terms of u_1 \text{ and } u_2

u_1=-2t\\du_1=-2dt\\-\frac{1}{2}du_1=dt     u_2=4t\\du_2=4dt\\\frac{1}{4}du_2=dt

\int dy'=\int e^{u_1} dt + 10\int e^{u_2}dt\\\int dy'=\int e^{u_1} (-\frac{1}{2} du_1) + 10\int e^{u_2}  (\frac{1}{4} du_2)\\\int dy'=-\frac{1}{2} \int e^{u_1} (du_1) + 10 *\frac{1}{4} \int e^{u_2}  (du_2)

Using the Exponential rule (don't forget your constant of integration):

y'=-\frac{1}{2} e^{u_1} + 10 *\frac{1}{4}e^{u_2} +C_1

Back substituting for u_1 \text{ and } u_2:

y'=-\frac{1}{2} e^{(-2t)} + 10 *\frac{1}{4}e^{(4t)} +C_1\\y'=-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} +C_1\\

<u>Finding the constant of integration</u>

Given initial condition  y'(0)=0

y'(t)=-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} +C_1\\0=y'(0)=-\frac{1}{2} e^{-2(0)} + \frac{5}{2}e^{4(0)} +C_1\\0=-\frac{1}{2} (1) + \frac{5}{2}(1) +C_1\\-2=C_1\\

The first derivative with the initial condition applied: y'(t)=-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2\\

<u>Round 2:</u>

Integrate again:

y' =-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2\\\frac{dy}{dt} =-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2\\dy =[-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2]dt\\\int dy =\int [-\frac{1}{2} e^{-2t} + \frac{5}{2}e^{4t} -2]dt\\\int dy =\int -\frac{1}{2} e^{-2t} dt + \int \frac{5}{2}e^{4t} dt - \int 2 dt\\\int dy = -\frac{1}{2} \int e^{-2t} dt + \frac{5}{2} \int e^{4t} dt - 2 \int dt\\

y = -\frac{1}{2} * -\frac{1}{2} e^{-2t} + \frac{5}{2} * \frac{1}{4} e^{4t} - 2 t + C_2\\y(t) = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + C_2

<u />

<u>Finding the constant of integration :</u>

Given initial condition  y(0)=1

1=y(0) = \frac{1}{4} e^{-2(0)} + \frac{5}{8} e^{4(0)} - 2 (0) + C_2\\1 = \frac{1}{4} (1) + \frac{5}{8} (1) - (0) + C_2\\1 = \frac{7}{8} + C_2\\\frac{1}{8}=C_2

So, y(t) = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}

<u>Checking the solution</u>

y(t) = \frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}

This matches our initial conditions here y(0) = \frac{1}{4} e^{-2(0)} + \frac{5}{8} e^{4(0)} - 2 (0) + \frac{1}{8} = 1

Going back to the function, differentiate:

y' = [\frac{1}{4} e^{-2t} + \frac{5}{8} e^{4t} - 2 t + \frac{1}{8}]'\\y' = [\frac{1}{4} e^{-2t}]' + [\frac{5}{8} e^{4t}]' - [2 t]' + [\frac{1}{8}]'\\y' = \frac{1}{4} [e^{-2t}]' + \frac{5}{8} [e^{4t}]' - 2 [t]' + [\frac{1}{8}]'

Apply Exponential rule and chain rule, then power rule

y' = \frac{1}{4} e^{-2t}[-2t]' + \frac{5}{8} e^{4t}[4t]' - 2 [t]' + [\frac{1}{8}]'\\y' = \frac{1}{4} e^{-2t}(-2) + \frac{5}{8} e^{4t}(4) - 2 (1) + (0)\\y' = -\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2

This matches our first order step and the initial conditions there.

y'(0) = -\frac{1}{2} e^{-2(0)} + \frac{5}{2} e^{4(0)} - 2=0

Going back to the function y', differentiate:

y' = -\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2\\y'' = [-\frac{1}{2} e^{-2t} + \frac{5}{2} e^{4t} - 2]'\\y'' = [-\frac{1}{2} e^{-2t}]' + [\frac{5}{2} e^{4t}]' - [2]'\\y'' = -\frac{1}{2} [e^{-2t}]' + \frac{5}{2} [e^{4t}]' - [2]'

Applying the Exponential rule and chain rule, then power rule

y'' = -\frac{1}{2} e^{-2t}[-2t]' + \frac{5}{2} e^{4t}[4t]' - [2]'\\y'' = -\frac{1}{2} e^{-2t}(-2) + \frac{5}{2} e^{4t}(4) - (0)\\y'' = e^{-2t} + 10 e^{4t}

So our proposed solution is a solution to the differential equation, and satisfies the initial conditions given.

7 0
2 years ago
Free points + brainliest !!! only for correct answer
RSB [31]

Answer:

D. Kinetic Energy

Explanation:

When a vehicle—or any other object—is in motion, it has kinetic energy. Kinetic energy (KE) is given by the equation KE = 1/2mv², where m is the object's mass and v is the object's velocity. As an object in motion becomes heavier, its kinetic energy increases proportionally: double the mass and you double the kinetic energy.

4 0
3 years ago
Read 2 more answers
Other questions:
  • 3. At the present time the global human population surpasses seven billion people. If we exceed the carrying capacity of the ear
    6·1 answer
  • A man was walking in the rain. He was in the middle of nowhere. He had nothing and nowhere to hide. He came home all wet, but no
    15·2 answers
  • Who is the narrorator of sailing from troy? (The Oddessey)
    13·1 answer
  • Psychologists claim that all of the following brain structures influence one's emotional response except __________.
    15·2 answers
  • 6. Which two words refer to a political community that occupies a clearly defined territory and has an
    6·2 answers
  • What bilingual country granted its French-speaking region considerable autonomy in
    11·1 answer
  • Yo isn't election day tmro?
    15·1 answer
  • Any tips that has helped you answer SAQs in AP World History
    13·2 answers
  • Which of the following scenarios is representative of how agricultural practices can attect the environment
    6·1 answer
  • Kung ikaw ay mgkakaroon ng pagkakataon sa kinabukasan na magtatag ng sariling Kawang gawa o Organisasyon, ano ang pangalan nito,
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!