------------------------------------------------------------------------------------------
Equation
------------------------------------------------------------------------------------------
y = -3x - 9
------------------------------------------------------------------------------------------
Option 1
------------------------------------------------------------------------------------------
If I substitute x = -9, I should get y = 0
When x = -9
y = -3 (-9) - 9
= 18 (I did not get 0, wrong)
------------------------------------------------------------------------------------------
Option 2
------------------------------------------------------------------------------------------
If I substitute x = -3, I should get y = 0
y = -3(-3) - 9
y = 9 - 9
y = 0 (Yes, I got 0, correct)
------------------------------------------------------------------------------------------
Option 3
------------------------------------------------------------------------------------------
If I substitute x = 0, I should get y = -3
y = -3 (0) - 9
y = 0 - 9
y = -9 (I did not get -3, wrong)
------------------------------------------------------------------------------------------
Option 4
------------------------------------------------------------------------------------------
If I substitute x = 0, I should get y = -9
y = -3 (0) - 9
y = 0 - 9
y = -9 (Yes, I got -9, correct)
------------------------------------------------------------------------------------------
Answer: (-3, 0) and (0, 9) are ordered pairs of the equation (Answer B, D)
------------------------------------------------------------------------------------------
The answer is B. 13.9. Since M is the midpoint, it splits the line into 2 equal parts.
27.8 / 2 = 13.9
<span>Remember, the domain of a function is all of the x values in
the (x,y) coordinates. For this, let’s take a few bench mark coordinates. (0,0)
(1,2.5)(2,0) (3, -9). Those definitely aren’t all real numbers, so eliminate A.
X is not only less than or equal to 0, so eliminate C. </span>
<span>It’s B.</span>
-2(2x-1)(x+3) = ((-2)2x - (-2)(-1))(x+3) = (-4x-2)(x+3)