The soluition set is (-3,5) and a normal ordered pair reads (x,y). So that means 5 = [_]x-10
-Add 10 to both sides
15 = [_]x
-And we know the value of x so lets sub that in.
15 = [_](-3)
-And now we divide by -3
-5 = [_]
Next we have 3x-[_]y=-19
-Lets start this buy substituting values of x and y into the equation again.
3(-3)-[_](5)=-19
-Simplify
-9 - [_](5) = -19
-Move the (-9) by adding 9 to both sides
-[_](5) = -10
-divide by 5 = -2
-(1)[_] = -2
[_] = 2
Answer:
The answer for the value of x is, x=20
This would be 4y + 1ytytyty I believe considering they’re all bunched together in the last bit.
Answer:
The values of x for which the model is 0 ≤ x ≤ 3
Step-by-step explanation:
The given function for the volume of the shipping box is given as follows;
V = 2·x³ - 19·x² + 39·x
The function will make sense when V ≥ 0, which is given as follows
When V = 0, x = 0
Which gives;
0 = 2·x³ - 19·x² + 39·x
0 = 2·x² - 19·x + 39
0 = x² - 9.5·x + 19.5
From an hint obtained by plotting the function, we have;
0 = (x - 3)·(x - 6.5)
We check for the local maximum as follows;
dV/dx = d(2·x³ - 19·x² + 39·x)/dx = 0
6·x² - 38·x + 39 = 0
x² - 19/3·x + 6.5 = 0
x = (19/3 ±√((19/3)² - 4 × 1 × 6.5))/2
∴ x = 1.288, or 5.045
At x = 1.288, we have;
V = 2·1.288³ - 19·1.288² + 39·1.288 ≈ 22.99
V ≈ 22.99 in.³
When x = 5.045, we have;
V = 2·5.045³ - 19·5.045² + 39·5.045≈ -30.023
Therefore;
V > 0 for 0 < x < 3 and V < 0 for 3 < x < 6.5
The values of x for which the model makes sense and V ≥ 0 is 0 ≤ x ≤ 3.