1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vagabundo [1.1K]
3 years ago
15

Which equation accurately represents this statement? Select three options.

Mathematics
2 answers:
N76 [4]3 years ago
5 0

Answer:

X = 2

Step-by-step explanation:

4.9x - (-3) = 12.8

4.9x = 12.8 + (-3)

4.8x - 12.8 = -3

Can be three different forms

To solve:

4.9x = 12.8 - 3

4.9x = 9.8

x = 2

atroni [7]3 years ago
3 0

Complete question:

Which equation accurately represents this statement? Check all that apply.

Negative 3 less than 4.9 times a number, x, is the same as 12.8

A: -3-4.9x=12.8

B: 4.9x-(-3)=12.8

C: 3+4.9x=12.8

D: (4.9-3)x=12.8

E:  12.8=4.9x+3

Answer:

B: 4.9x-(-3)=12.8

C: 3+4.9x=12.8

E:  12.8=4.9x+3

Step-by-step explanation:

The word equation can be expressed mathematically as follows

negative 3  → -3

less than 4.9 times a number , x →  4.9 x - (-3)

is same as 12.8  → 4.9 x - (-3) = 12.8

The equation can be expressed as

4.9 x - (-3) = 12.8

when you open the bracket, you multiply  -3 time  - 1 . MInus times minus is equals to plus. so you get

4.9 x + 3 = 12.8

12.8 = 4.9x+3

You might be interested in
Which expression is equivalent to −4.6+(−0.4)+(−7.2) ?
NeTakaya
Answer: A. -4.6-(0.4+7.2)
3 0
4 years ago
Find y' if y= In (x2 +6)^3/2<br> y'=
Schach [20]

Answer:

\displaystyle y' = \frac{3xln(x^2 + 6)^{\frac{1}{2}}}{x^2 + 6}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Property [Multiplied Constant]:                                                                \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Rule [Chain Rule]:                                                                                     \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

ln Derivative: \displaystyle \frac{d}{dx} [lnu] = \frac{u'}{u}

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = ln(x^2 + 6)^{\frac{3}{2}}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Derivative] Chain Rule:                                                                                 \displaystyle y' = \frac{d}{dx}[ln(x^2 + 6)^{\frac{3}{2}}] \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  2. [Derivative] Chain Rule [Basic Power Rule]:                                                 \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{3}{2} - 1} \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  3. [Derivative] Simplify:                                                                                      \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{d}{dx}[ln(x^2 + 6)] \cdot \frac{d}{dx}[x^2 + 6]
  4. [Derivative] ln Derivative:                                                                               \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot \frac{d}{dx}[x^2 + 6]
  5. [Derivative] Basic Power Rule:                                                                      \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot (2 \cdot x^{2 - 1} + 0)
  6. [Derivative] Simplify:                                                                                       \displaystyle y' = \frac{3}{2}ln(x^2 + 6)^{\frac{1}{2}} \cdot \frac{1}{x^2 + 6} \cdot (2x)
  7. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3ln(x^2 + 6)^{\frac{1}{2}}}{2} \cdot \frac{1}{x^2 + 6} \cdot (2x)
  8. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)} \cdot (2x)
  9. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{3(2x)ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  10. [Derivative] Multiply:                                                                                       \displaystyle y' = \frac{6xln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  11. [Derivative] Factor:                                                                                         \displaystyle y' = \frac{2(3x)ln(x^2 + 6)^{\frac{1}{2}}}{2(x^2 + 6)}
  12. [Derivative] Simplify:                                                                                       \displaystyle y' = \frac{3xln(x^2 + 6)^{\frac{1}{2}}}{x^2 + 6}

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

3 0
3 years ago
The perimeter of a rectangle is 48 inches and it’s length is 4 inches more than it’s width what is the area of the rectangle
Art [367]
If the length is w+4 then the equation for the whole perimeter would be 4w+8. 2w+8 for both of the lengths and 2w for both of the widths.
4w+8=48
4w+8-8=48-8
4w=40
4w/4=40/4
w=10
l=10+8, l=18
l x w=a, 18*10=180
The area of the rectangle is 180in^2
7 0
4 years ago
Rewrite as a whole number 17/17
Kisachek [45]
1 because 17 parts out of 17 parts make a whole, 1 whole.
8 0
3 years ago
Read 2 more answers
Helppppo<br><br><br> i will give brainliest!!!
nadya68 [22]
Your answer will be C. Will put explanation in the comments in a few mins.
8 0
2 years ago
Read 2 more answers
Other questions:
  • He sum of two numbers is 58. The difference of the two numbers is 32.
    11·2 answers
  • How do you round 32.6 to the nearest 10th
    12·1 answer
  • Madie drove 200 miles at a speed of 50 miles per hour. Which equation will help you find the number of hours she was driving?
    12·2 answers
  • 7. Jason wants to walk the shortest distance to get from the parking lot to the beach
    11·1 answer
  • Item 20 A bird leaves its nest and travels 20 miles per hour downwind for x hours. On the return trip, the bird travels 4 miles
    13·2 answers
  • Jeremy is trying to explain why a triangle with side lengths 35, 30, 60 is not a right triangle. His explanation is shown below.
    8·2 answers
  • Bethany says that 3x+6+x and 3(x+2) and equivalent expressions. She used substitution to support her answer. Explain what Bethan
    7·1 answer
  • HELP ASAP BRAINLIEST IF UR RIGHT
    7·1 answer
  • Can someone please help me​
    7·1 answer
  • Original price: $32; Markup: 12.5%; Retail price
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!