The answer would be Find 40% of 20 because you would round 43% down and 18 up. Hope this helps :)
Answer:
Step-by-step explanation:
Answer:
7c + 5
Step-by-step explanation:
(8c+8)–(c+3)
8c - c = 7c
8 - + 3 = 5
7c + 5
Answer:
2.28% of tests has scores over 90.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean and standard deviation , the zscore of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
What proportion of tests has scores over 90?
This proportion is 1 subtracted by the pvalue of Z when X = 90. So
has a pvalue of 0.9772.
So 1-0.9772 = 0.0228 = 2.28% of tests has scores over 90.
Answer:
6.24
Step-by-step explanation:
A= 18.42g, B = 5.8g,C = 0.75g
Total = 18.42 + 5.8 + 0.75
= 24.97g
Then divided into four equal parts
= 24.97g/4
= 6.2425g
= 6.24g