Answer:
gaseous state
Explanation:
may be because it is result of endothermic process (evaporation
Atmospheric pressure is measured with a barometer. A barometer consists of an evacuated vertical tube with its top end closed and its bottom end resting in a container of mercury that is open to the atmosphere The pressure exerted by the atmosphere acts on the exposed surface of the liquid to force mercury up into the tube. Sea level atmospheric pressure will support a mercury column generally not more than 29.92-in. high. Thus, the standard for atmospheric pressure at sea level is 29.92 in.-Hg, which translates to an absolute pressure of 14.69 psia.
The two basic reference points in all these measurements are standard atmospheric pressure and a perfect vacuum.
Explanation:
The cyclic universe theory is a model of cosmic evolution according to which the universe undergoes endless waves of expansion and cooling. It's any of several cosmotoligal models in which the universe follows infinate, indenfinate, self-sustaining practices.
I hope my answer helped you! Have a great day!
A rating and a Thanks would also be great!
There isn t a 'middle' carbon because there is an even number of them
If the methyl group braches off the 3rd carbon the name is
hexa-3-methyl-3-ene
Answer:
= 3.78 g H₂O
Explanation:
2C₂H₆ + 3O₂ => 4CO₂ + 6H₂O
2.1g C₂H₆ = 2.1g/30.0 g/mol = 0.07 mole ethane
3.68g O₂ = 3.68g/32 g/mol = 0.115 mole oxygen
Limiting Reactant:
A quick way to determine limiting reactant is to divide moles of reactant by its respective coefficient in the balanced molecular equation. The smaller value is the limiting reactant.
moles ethane = 0.07 mole / 2 (the coefficient in balanced equation) = 0.035
moles oxygen = 0.115 mole / 3 (the coefficient in balanced equation) = 0.038
Since the smaller value is associated with ethane, then ethane is the limiting reactant and the problem is worked from the 0.07 moles of ethane in an excess of O₂.
From the equation stoichiometry ...
2 moles C₂H₆ in an excess of O₂ => 6 moles H₂O
then 0.07 mole C₂H₆ in an excess of O₂ => 6/2(0.07 moles H₂O = 0.21 mole
Converting to grams of water produced
= 0.21 mole H₂O X 18 g/mol = 3.78 g H₂O