Answer:
227.78g of the precipitate are produced
Explanation:
Based on the reaction, 3 moles of CuCl2 produce 1 mole of Cu3(PO4)2 (The precipitate).
To solve this question we need to find the moles of CuCl2 added. With these moles and the reactio we can find the moles of Cu3(PO4)2 and its mass as follows:
<em>Moles CuCl2:</em>
285mL = 0.285L * (6.3mol / L) = 1.7955 moles CuCl2
<em>Moles Cu3(PO4)2:</em>
1.7955 moles CuCl2 * (1mol Cu3(PO4)2 / 3mol CuCl2) = 0.5985 moles Cu3(PO4)2
<em>Mass Cu3(PO4)2 -380.58g/mol-</em>
0.5985 moles Cu3(PO4)2 * (380.58g/mol) =
227.78g of the precipitate are produced
Answer:
Ok, so the process here is to convert the mass of H2 (hydrogen gas) to moles by dividing the mass by the molar mass of H2. Once you have the moles then you have to multiply by the STP (standard temperature and pressure) molar volume which should be 22.4.
Molar mass of H2 = (1.01)x2 = 2.02g/mol
19.3/2.02 = 9.55 moles
Now just multiply the moles by the molar volume
9.55 moles x 22.4 = 213.92 Litres of H2 are in 19.3g of H2
Answer:
The object at 50°C will have a higher kinetic energy.
Explanation:
Temperature is a measure of the average kinetic energy of the particles in an object. As you introduce more energy into the system (e.g. heat the object), the particles on average move faster because they have more kinetic energy.
Answer: I am actually studying about Stars, so I got you.
3. As the temperature of a star Increases, it's luminosity increases.
As the temperature of a star decreases, it's luminosity decreases.
4. Hot and Bright. The bigger the star, the hotter it gets is from what I learned.