Answer:
A b or c
Step-by-step explanation:
Easy shahhshhshs free points hehe
Answer: 103
Step-by-step explanation:
8 x 6.5 = 52,
52 + 8 = 60 (pints in total)
there are 2 cups in 1 pint so 60 x 2 = 120
120 - 17 = 103
Since we are already given the amount of jumps from the first trial, and how much it should be increased by on each succeeding trial, we can already solve for the amount of jumps from the first through tenth trials. Starting from 5 and adding 3 each time, we get: 5 8 (11) 14 17 20 23 26 29 32, with 11 being the third trial.
Having been provided 2 different sigma notations, which I assume are choices to the question, we can substitute the initial value to see if it does match the result of the 3rd trial which we obtained by manual adding.
Let us try it below:
Sigma notation 1:
10
<span> Σ (2i + 3)
</span>i = 3
@ i = 3
2(3) + 3
12
The first sigma notation does not have the same result, so we move on to the next.
10
<span> Σ (3i + 2)
</span><span>i = 3
</span>
When i = 3; <span>3(3) + 2 = 11. (OK)
</span>
Since the 3rd trial is a match, we test it with the other values for the 4th through 10th trials.
When i = 4; <span>3(4) + 2 = 14. (OK)
</span>When i = 5; <span>3(5) + 2 = 17. (OK)
</span>When i = 6; <span>3(6) + 2 = 20. (OK)
</span>When i = 7; 3(7) + 2 = 23. (OK)
When i = 8; <span>3(8) + 2 = 26. (OK)
</span>When i = 9; <span>3(9) + 2 = 29. (OK)
</span>When i = 10; <span>3(10) + 2 = 32. (OK)
Adding the results from her 3rd through 10th trials: </span><span>11 + 14 + 17 + 20 + 23 + 26 + 29 + 32 = 172.
</span>
Therefore, the total jumps she had made from her third to tenth trips is 172.
Step-by-step explanation:
First
Outer
Inner
Last
First- 5x*2x=10x^2
Outer-5x*-1= -5x
Inner--7*2x= -14x
Last- -7*-1= 7
10x^2-5x-14x+7
you can simplify it further however thats the answer
We want to see how many solutions has an equation given some restrictions on the vectors of the equation.
We have 3 vectors in R2.
v₁, v₂, and v₃.
Where we know that v₁ and v₂ are parallel. And two vectors are parallel if one is a scalar times the other.
Then we can write:
v₂ = c*v₁
Where c is a real number.
Then our system:
x*v₁ + y*v₂ = v₃
Can be rewriten to:
x*v₁ + y*c*v₁ = v₃
(x + y*c)*v₁ = v₃
Assuming x, y, and c are real numbers, this only has a solution if v₁ is also parallel to v₃, because as you can see, the equation says that v₃ is a scallar times v₁.
Geometrically, this means that if we sum two parallel vectors, we will get a vector that is parallel to the two that we added.
If you want to learn more, you can read:
brainly.com/question/13322477