Answer:
<em>firstly</em><em> find</em><em> the</em><em> gradient</em><em> given</em><em> by</em><em> the</em><em> equation</em>
<em>m=</em><em>y2-y1</em><em>/</em><em>x2-x1</em>
<em>in this </em><em>case</em><em> </em><em>x1 </em><em>is </em><em>-</em><em>1</em><em>2</em><em>,</em><em>x2 </em><em>is </em><em>-</em><em>1</em><em>7</em><em>,</em><em> </em><em>y1 </em><em>is </em><em>-8 </em><em>and </em><em>y2 </em><em>is</em><em>-</em><em>1</em><em>6</em>
<em>m=</em><em>-</em><em>1</em><em>6</em><em>+</em><em>8</em><em>/</em><em>-</em><em>1</em><em>7</em><em>+</em><em>1</em><em>2</em>
<em> </em><em> </em><em> </em><em>=</em><em>-</em><em>8</em><em>/</em><em>-</em><em>5</em><em> </em><em>or1.</em><em>6</em>
<em>then</em><em> </em><em>use </em><em>the </em><em>equation</em>
<em>y-y1</em><em>=</em><em>m(</em><em>x-x1</em><em>)</em>
y+8=1.6(x+12)
y+8=1.6x+19.2
y=1.6x+11.2
I hope this helps and sorry if it's wrong
Answer:


Step-by-step explanation:
<em>See Attachment for complete question</em>
To determine which of the options has (-4,2) as its solution; we have to test each linear combination until we arrive at an answer;
Given that

Testing Option A


Substitute
and
in 

Open Brackets


Substitute
and
in 

Open Brackets


<em>In both cases, the expression on the right hand side equates to that on the left hand side; </em>
<em>Hence, there's no need to check for other options. </em>
Subtract 5y from both sides of the equation
X=13-5y
Answer:
Step-by-step explanation:
5.) slope is -1/3; y- intercept is -5
6.) slope is 5/2: 5mm of rain falls every 2 hours.
Please give me brainliest :)
Answer:
f(10) = 120
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = x² + 3x - 10
f(10) is x = 10
<u>Step 2: Evaluate</u>
- Substitute: f(10) = 10² + 3(10) - 10
- Exponents: f(10) = 100 + 3(10) - 10
- Multiply: f(10) = 100 + 30 - 10
- Add: f(10) = 130 - 10
- Subtract: f(10) = 120