1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aloiza [94]
3 years ago
9

Writing an equation given two points on the line write the equation of the line that passes through the points (7, –4) and (–1,

3), first in point-slope form, and then in slope-intercept form.
Mathematics
1 answer:
telo118 [61]3 years ago
4 0
Are there multiple choices?

You might be interested in
HELP MEeeeeeeeee g: R² → R a differentiable function at (0, 0), with g (x, y) = 0 only at the point (x, y) = (0, 0). Consider<im
GrogVix [38]

(a) This follows from the definition for the partial derivative, with the help of some limit properties and a well-known limit.

• Recall that for f:\mathbb R^2\to\mathbb R, we have the partial derivative with respect to x defined as

\displaystyle \frac{\partial f}{\partial x} = \lim_{h\to0}\frac{f(x+h,y) - f(x,y)}h

The derivative at (0, 0) is then

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{f(0+h,0) - f(0,0)}h

• By definition of f, f(0,0)=0, so

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{f(h,0)}h = \lim_{h\to0}\frac{\tan^2(g(h,0))}{h\cdot g(h,0)}

• Expanding the tangent in terms of sine and cosine gives

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{\sin^2(g(h,0))}{h\cdot g(h,0) \cdot \cos^2(g(h,0))}

• Introduce a factor of g(h,0) in the numerator, then distribute the limit over the resulting product as

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{\sin^2(g(h,0))}{g(h,0)^2} \cdot \lim_{h\to0}\frac1{\cos^2(g(h,0))} \cdot \lim_{h\to0}\frac{g(h,0)}h

• The first limit is 1; recall that for a\neq0, we have

\displaystyle\lim_{x\to0}\frac{\sin(ax)}{ax}=1

The second limit is also 1, which should be obvious.

• In the remaining limit, we end up with

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{g(h,0)}h = \lim_{h\to0}\frac{g(h,0)-g(0,0)}h

and this is exactly the partial derivative of g with respect to x.

\displaystyle \frac{\partial f}{\partial x}(0,0) = \lim_{h\to0}\frac{g(h,0)-g(0,0)}h = \frac{\partial g}{\partial x}(0,0)

For the same reasons shown above,

\displaystyle \frac{\partial f}{\partial y}(0,0) = \frac{\partial g}{\partial y}(0,0)

(b) To show that f is differentiable at (0, 0), we first need to show that f is continuous.

• By definition of continuity, we need to show that

\left|f(x,y)-f(0,0)\right|

is very small, and that as we move the point (x,y) closer to the origin, f(x,y) converges to f(0,0).

We have

\left|f(x,y)-f(0,0)\right| = \left|\dfrac{\tan^2(g(x,y))}{g(x,y)}\right| \\\\ = \left|\dfrac{\sin^2(g(x,y))}{g(x,y)^2}\cdot\dfrac{g(x,y)}{\cos^2(g(x,y))}\right| \\\\ = \left|\dfrac{\sin(g(x,y))}{g(x,y)}\right|^2 \cdot \dfrac{|g(x,y)|}{\cos^2(x,y)}

The first expression in the product is bounded above by 1, since |\sin(x)|\le|x| for all x. Then as (x,y) approaches the origin,

\displaystyle\lim_{(x,y)\to(0,0)}\frac{|g(x,y)|}{\cos^2(x,y)} = 0

So, f is continuous at the origin.

• Now that we have continuity established, we need to show that the derivative exists at (0, 0), which amounts to showing that the rate at which f(x,y) changes as we move the point (x,y) closer to the origin, given by

\left|\dfrac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}}\right|,

approaches 0.

Just like before,

\left|\dfrac{\tan^2(g(x,y))}{g(x,y)\sqrt{x^2+y^2}}\right| = \left|\dfrac{\sin^2(g(x,y))}{g(x,y)}\right|^2 \cdot \left|\dfrac{g(x,y)}{\cos^2(g(x,y))\sqrt{x^2+y^2}}\right| \\\\ \le \dfrac{|g(x,y)|}{\cos^2(g(x,y))\sqrt{x^2+y^2}}

and this converges to g(0,0)=0, since differentiability of g means

\displaystyle \lim_{(x,y)\to(0,0)}\frac{g(x,y)-g(0,0)}{\sqrt{x^2+y^2}}=0

So, f is differentiable at (0, 0).

3 0
3 years ago
Greg has a bag that contains 25 colored tiles. Of all the tiles in this​ bag, 10 are blue. Suppose another bag contains 250 colo
Sergio [31]

Answer:

he is less likely to pick a blue tile in the second bag

Step-by-step explanation:

divide 10 by 25 which will give you 40%

divide 75 by 250 which will give you 30%

this makes it less likely for Greg to pick blue from the second bag, as the first bag has a higher percentage chance

6 0
3 years ago
Please help me with this question
KonstantinChe [14]
Equation for Line
y = -1/2 x - 2
8 0
3 years ago
How many more cents per item is 3 items for $10 than 2 items for $5? Express your answer to the nearest whole number.
fiasKO [112]
10/3: 3.33
5/2:2.50

3.33-2.50=0.83

Answer: 83 cents.

5 0
3 years ago
Reduce -10/-5 dont know how too reduce
Agata [3.3K]

Answer:

-10/-5= 2 simply divide

2 negatives multiplied and/ or divided by is a positive number

5 0
3 years ago
Other questions:
  • A bond is initially bought for $250. It doubles in value every decade.Write an equation relating v, the value of the bond, to d,
    15·1 answer
  • Mikkel pays a 4 percent state income tax on his earnings. If he earns $1,867, how much state income tax can he expect to pay?
    5·2 answers
  • The sum of the length l and 19
    11·1 answer
  • 53 divided by 954???
    7·1 answer
  • Solve for e and f please
    14·1 answer
  • .
    6·1 answer
  • Of the words, which is five-sixths of the list. How many words are on the list?
    10·1 answer
  • 1. Solve for y.
    15·1 answer
  • A safety light is designed so that the times between flashes are normally distributed with a mean of and a standard deviation of
    15·1 answer
  • What is the surface area of this rectangular pyramid?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!