Answer: 3/8
Step-by-step explanation:
Since it is a fair coin, then generally, P(Head) = P(Tail) = ½
And since we've been asked to find the probability that the number of heads in the first two tosses be equal to the number of heads in the second two tosses, tossing a fair coin four times, the possible outcomes of having equal number of heads in first two tosses and second two tosses becomes:
[HHHH] or [HTHT] or [THTH] or [TTTT] or [HTTH] or [THHT]
=[½*½×½*½] + [½*½×½*½] + [½*½×½*½] + [½*½×½*½] + [½*½×½*½] + [½*½×½*½]
=1/16 * 6
=6/16
=3/8.
Well the probability of rolling a six on it would be 1/20.
So, if you're rolling it 1,000 times, 1,000 x 1/20 = 50.
You would roll a six approximately 50 times.
Answer:
C
Step-by-step explanation:
Since the slope and the y-intercept for the equation of y = mx + b doesn't exist, you don't need to include it.
y = mx + b
Without the m and b, which are the slope and y-intercept, you are left with x.
Then, you need to figure out whether the line is horizontal, or vertical.
If the line is vertical, you keep the x, and find out the value x is on for every point of y.
If the line is horizontal, you keep the y, and find out the value y is on for every point of x.
Since the line is vertical, we can use x = ?
The line is always at x=2, no matter what the y-value is, so the final equation would be x=2.
<em>I hope this helped you! :)</em>