Answer: Did you find an answer yet?? Lol
Step-by-step explanation:
For numbers 15-17, we need to remember that two of a triangle's angles are always acute and the third angle will allow us to classify the triangle based on its angles. now that we know this, let's look at #15. the first two angles listed are acute, and the third is an obtuse angle, therefore it is an obtuse triangle. on #16 we have three acute angles, so it is an acute triangle. #17 has two acute angles and a right angle so it is a right triangle.
on numbers 21-23, we need to know that a triangle with all congruent sides is called equilateral, a triangle with two equal sides is isosceles, and a triangle with no equal sides is called scalene. #21 shows two equal sides so it is an isosceles triangle. #22 has three equal sides so it is an equilateral triangle. #23 has no equal sides so it is scalene. hope this helped! :)
Answer:
(-3, 4)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
- Solving systems of equations by graphing
Step-by-step explanation:
<u>Step 1: Define Systems</u>
16x + 14y = 8
-63x - 14y = 133
<u>Step 2: Solve for </u><em><u>x</u></em>
<em>Elimination</em>
- Combine 2 equations: -47x = 141
- Divide -47 on both sides: x = -3
<u>Step 3: Solve for </u><em><u>y</u></em>
- Define original equation: 16x + 14y = 8
- Substitute in <em>x</em>: 16(-3) + 14y = 8
- Evaluate multiplication: -48 + 14y = 8
- Add 48 on both sides: 14y = 56
- Divide 14 on both sides: y = 4
<u>Step 4: Graph Systems</u>
<em>Check the solution set.</em>
Answer:
0, 5/4
Step-by-step explanation:
If
, you get 0=0, which is obviously true.
As long as K is not 0, you can divide by k and get
which is solved by 
Answer:
Step-by-step explanation:
Question (1).
OQ and RT are the parallel lines and UN is a transversal intersecting these lines at two different points P and S.
A). ∠OPS ≅ ∠RSU [corresponding angles]
B). m∠OPS + m∠RSP = 180° [Consecutive interior angles]
C). m∠OPS + m∠OPN = 180° [Linear pair of angles]
D). Since, ∠OPS ≅ ∠TSP [Alternate interior angles]
And m∠TSP + m∠TSU = 180° [Linear pair of angles]
Therefore, Option (A) is the correct option.
Question (2).
A). m∠RSP + m∠RSU = 180° [Linear pair of angles]
B). m∠RSP + m∠PST = 180° [Linear pair of angles]
C). ∠RSP ≅ ∠TSU [Vertically opposite angles]
D). m∠RSP + m∠OPS = 180° [Consecutive interior angles]
Therefore, Option (C) will be the answer.