1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skelet666 [1.2K]
4 years ago
5

I need help on this math problem.

Mathematics
2 answers:
MrMuchimi4 years ago
8 0

Answer:

its A.

Step-by-step explanation:

egoroff_w [7]4 years ago
8 0
The answer is A or B
You might be interested in
A sales person is paid a weekly salary of $760, plus a commission of 7.5% of all her sales for the week. Express her weekly inco
Elis [28]

Answer:

1. We can see that salesperson's weekly income is the sum of her constant weekly salary ($760) and a commission which is variable and depends on her weekly sales.

So, if we say that y is her weekly income and x is her weekly sales, we can write this as:

y = 760 + 0.075x

Note that we had to change percentage to decimal number dividing it by 100.

2  Since for each value of x there is only one corresponding value of y, we can say that this is a function. For any value of x we input there is only one solution we get - that is the main feature of function and a way to tell if something is really a function.

Since this is a function, it can also be written as:

f(x) = 760 + 0.075x

3. Domain of a function is, basically, set of all values of x for which the function can work. That practically means that, since x is weekly sale, it can not be negative (one cannot make -$500 sale, for example). However, it is possible that she doesn't make a sale one week, making it possible for x to be 0. Also, the value of her sales doesn't have to be integer (it is quite possible that she makes $673.50 sale).

All this means that appropriate domain for this function are positive real numbers including 0.

6 0
4 years ago
△FSB∼△ZDR .<br><br> What is the value of x?<br><br> Enter your answer.<br><br> How many units?
kari74 [83]
Answer: 22

---------------------------------------------------------

Explanation:

The triangles are similar, so we know the corresponding sides form ratios that are equal. 

Note how...
FS and ZD are the first two letters of FSB and ZDR respectively
FB and ZR are the first & last letters of FSB and ZDR respectively

Based on those two facts above, we can form this proportion
FS/ZD = FB/ZR
38/15.2 = 55/x

Solve for x
38/15.2 = 55/x
38*x = 15.2*55
38*x = 836
x = 836/38
x = 22

4 0
4 years ago
Write a compound inequality to represent all of the numbers between -4 and 6.
svetlana [45]
-4<x<6 would be the compound inequality
6 0
3 years ago
The function f(x) = x2 has been translated 9 units up and 4 units to the right to form the function g(x). Which represents g(x)?
Inga [223]
For this case , the parent function is given by [tex f (x) =x^2
[\tex]
We apply the following transformations
Vertical translations :
Suppose that k > 0
To graph y=f(x)+k, move the graph of k units upwards
For k=9
We have
[tex]h(x)=x^2+9
[\tex]
Horizontal translation
Suppose that h>0
To graph y=f(x-h) , move the graph of h units to the right
For h=4 we have :
[tex ] g (x) =(x-4) ^ 2+9
[\tex]
Answer :
The function g(x) is given by
G(x) =(x-4)2 +9
8 0
3 years ago
Read 2 more answers
Consider the equation below. (If an answer does not exist, enter DNE.) f(x) = x3 − 6x2 − 15x + 4 (a) Find the interval on which
kozerog [31]

Answer:

a) The function, f(x) is increasing at the intervals (x < -1.45) and (x > 3.45)

Written in interval form

(-∞, -1.45) and (3.45, ∞)

- The function, f(x) is decreasing at the interval (-1.45 < x < 3.45)

(-1.45, 3.45)

b) Local minimum value of f(x) = -78.1, occurring at x = 3.45

Local maximum value of f(x) = 10.1, occurring at x = -1.45

c) Inflection point = (x, y) = (1, -16)

Interval where the function is concave up

= (x > 1), written in interval form, (1, ∞)

Interval where the function is concave down

= (x < 1), written in interval form, (-∞, 1)

Step-by-step explanation:

f(x) = x³ - 6x² - 15x + 4

a) Find the interval on which f is increasing.

A function is said to be increasing in any interval where f'(x) > 0

f(x) = x³ - 6x² - 15x + 4

f'(x) = 3x² - 6x - 15

the function is increasing at the points where

f'(x) = 3x² - 6x - 15 > 0

x² - 2x - 5 > 0

(x - 3.45)(x + 1.45) > 0

we then do the inequality check to see which intervals where f'(x) is greater than 0

Function | x < -1.45 | -1.45 < x < 3.45 | x > 3.45

(x - 3.45) | negative | negative | positive

(x + 1.45) | negative | positive | positive

(x - 3.45)(x + 1.45) | +ve | -ve | +ve

So, the function (x - 3.45)(x + 1.45) is positive (+ve) at the intervals (x < -1.45) and (x > 3.45).

Hence, the function, f(x) is increasing at the intervals (x < -1.45) and (x > 3.45)

Find the interval on which f is decreasing.

At the interval where f(x) is decreasing, f'(x) < 0

from above,

f'(x) = 3x² - 6x - 15

the function is decreasing at the points where

f'(x) = 3x² - 6x - 15 < 0

x² - 2x - 5 < 0

(x - 3.45)(x + 1.45) < 0

With the similar inequality check for where f'(x) is less than 0

Function | x < -1.45 | -1.45 < x < 3.45 | x > 3.45

(x - 3.45) | negative | negative | positive

(x + 1.45) | negative | positive | positive

(x - 3.45)(x + 1.45) | +ve | -ve | +ve

Hence, the function, f(x) is decreasing at the intervals (-1.45 < x < 3.45)

b) Find the local minimum and maximum values of f.

For the local maximum and minimum points,

f'(x) = 0

but f"(x) < 0 for a local maximum

And f"(x) > 0 for a local minimum

From (a) above

f'(x) = 3x² - 6x - 15

f'(x) = 3x² - 6x - 15 = 0

(x - 3.45)(x + 1.45) = 0

x = 3.45 or x = -1.45

To now investigate the points that corresponds to a minimum and a maximum point, we need f"(x)

f"(x) = 6x - 6

At x = -1.45,

f"(x) = (6×-1.45) - 6 = -14.7 < 0

Hence, x = -1.45 corresponds to a maximum point

At x = 3.45

f"(x) = (6×3.45) - 6 = 14.7 > 0

Hence, x = 3.45 corresponds to a minimum point.

So, at minimum point, x = 3.45

f(x) = x³ - 6x² - 15x + 4

f(3.45) = 3.45³ - 6(3.45²) - 15(3.45) + 4

= -78.101375 = -78.1

At maximum point, x = -1.45

f(x) = x³ - 6x² - 15x + 4

f(-1.45) = (-1.45)³ - 6(-1.45)² - 15(-1.45) + 4

= 10.086375 = 10.1

c) Find the inflection point.

The inflection point is the point where the curve changes from concave up to concave down and vice versa.

This occurs at the point f"(x) = 0

f(x) = x³ - 6x² - 15x + 4

f'(x) = 3x² - 6x - 15

f"(x) = 6x - 6

At inflection point, f"(x) = 0

f"(x) = 6x - 6 = 0

6x = 6

x = 1

At this point where x = 1, f(x) will be

f(x) = x³ - 6x² - 15x + 4

f(1) = 1³ - 6(1²) - 15(1) + 4 = -16

Hence, the inflection point is at (x, y) = (1, -16)

- Find the interval on which f is concave up.

The curve is said to be concave up when on a given interval, the graph of the function always lies above its tangent lines on that interval. In other words, if you draw a tangent line at any given point, then the graph seems to curve upwards, away from the line.

At the interval where the curve is concave up, f"(x) > 0

f"(x) = 6x - 6 > 0

6x > 6

x > 1

- Find the interval on which f is concave down.

A curve/function is said to be concave down on an interval if, on that interval, the graph of the function always lies below its tangent lines on that interval. That is the graph seems to curve downwards, away from its tangent line at any given point.

At the interval where the curve is concave down, f"(x) < 0

f"(x) = 6x - 6 < 0

6x < 6

x < 1

Hope this Helps!!!

5 0
3 years ago
Other questions:
  • Length=x^2 -8; W= -x+12 <br><br><br> PLEASE HELP!
    7·1 answer
  • Use the distributive property to simplify<br><br>8x5-12x5
    5·1 answer
  • Cassie has 8 red marbles and 12 yellow marbles. Her mom doubles her red and yellow marbles. Use the distributive property to sho
    13·2 answers
  • Simplify. 8.2 - (-14.1)​
    8·2 answers
  • In an arithmetic sequence, a1=5 and a6=-5. Determine an equation for an, the nth term of this sequence.
    13·1 answer
  • Identify the distance between points (3,7,1) and (9,6,7), and identify the midpoint of the segment for which these are the endpo
    5·2 answers
  • 3. Four pencils and two pens cost $0.74. Six pencils and five pens cost $1.53.
    6·1 answer
  • 5. Joe has $425.50 before he goes shopping. He spends 20% of it on groceries and then of the
    11·1 answer
  • 1,536÷24 GETS BRAINLIEST​
    9·2 answers
  • If a parallelogram has congruent
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!