<span>False.
Experimental probability is based on doing trials.</span>
I pretty sure you would use x over 38.00 = 20 over 100 then cross multiply them
Answer:
pay attention in class :)
Step-by-step explanation:
Answer:
red = 28 apples
green = 13 apples
equations:
r + g = 41
r = g + 15
Step-by-step explanation:
r = number of red
g = number of green
r = g + 15 (the number of red apples is 15 more than the number of green apples)
r + g = 41
Substitute the firs equation into the second and solve for a numerical value of g
(g + 15) + g = 41
2g + 15 = 41
2g = 26
g = 13
Now solve for a numerical value of r
r = g + 15
r = 13 + 15
r = 28
checking the math:
r + g = 41
28 + 13 = 41
Please lmk if you have any questions.
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall that
tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>)
so cos²(<em>θ</em>) cancels with the cos²(<em>θ</em>) in the tan²(<em>θ</em>) term:
(sin²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>))
Recall the double angle identity for cosine,
cos(2<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
so the 1 in the denominator also vanishes:
(sin²(<em>θ</em>) - 1) / (2 cos²(<em>θ</em>))
Recall the Pythagorean identity,
cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1
which means
sin²(<em>θ</em>) - 1 = -cos²(<em>θ</em>):
-cos²(<em>θ</em>) / (2 cos²(<em>θ</em>))
Cancel the cos²(<em>θ</em>) terms to end up with
(tan²(<em>θ</em>) cos²(<em>θ</em>) - 1) / (1 + cos(2<em>θ</em>)) = -1/2