1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sladkih [1.3K]
3 years ago
11

A wrench 0.1 meters long lies along the positive yy-axis, and grips a bolt at the origin. A force is applied in the direction of

⟨0,2,−4⟩⟨0,2,−4⟩ at the end of the wrench. Find the magnitude of the force in Newtons needed to supply 100 Newton-Meters of torque to the bolt.
Mathematics
1 answer:
Gemiola [76]3 years ago
8 0

Answer:

Therefore the magnitude of the applied force is 500\sqrt 5 N.

Step-by-step explanation:

Torque: Torque is the cross product of force and the distance of applied force  from the rotational axis.

\tau=\vec  F\times \vec r= |F||r| sin\theta

Where \theta is angle between F and r.

Newton-meter is the S.I unit of torque.

Along the positive y axis, the wrench lies .

The length of wrench is 0.1 m.

\vec r= 0.1 \hat j   [ since the vector \vec r lies on y axis]

The direction of applied force is along the vector <0,2,-4>.

Then the angle between \vec r and <0,2,-4> = the angle between F and \vec r.

We know that,

\vec a.\vec b=|\vec a||\vec b|cos \theta

\vec r .  =(0.1 \hat j) .(0\hat i+2 \hat j -4\hat k) =0+(0.1).2+0.(-4)=0.2

|\vec r|.|| cos \theta= \sqrt{0.1^2}.\sqrt{0^2+2^2+(-4)^2} \  cos \theta

\therefore\sqrt{(0.1)^2}.\sqrt{0^2+2^2+(-4)^2} \  cos \theta= 0.2

\Rightarrow (0.1).2\sqrt5 cos \theta =0.2

\Rightarrow  cos \theta =\frac{0.2}{0.2\sqrt 5}

\Rightarrow  cos \theta =\frac{1}{\sqrt 5}

We know that,

sin \theta =\sqrt{1-cos^2\theta}=\sqrt{1-(\frac{1}{\sqrt5})^2}

                            =\sqrt {1-\frac15}

                            =\sqrt {\frac{5-1}{5}

                            =\frac{2}{\sqrt 5}

Here \tau = 100 N-m, \vec r=0.1 \hat j and sin \theta = \frac{2}{\sqrt 5}

Now

\tau=|F||r| sin\theta

\Rightarrow 100= |F|(0.1) \frac{2}{\sqrt 5}

\Rightarrow |F|=\frac{100\times \sqrt5}{0.2}

\Rightarrow |F|=500\sqrt 5

Therefore the magnitude of the force is 500\sqrt 5 N.

                               

You might be interested in
Help PLSSSSSSSSSSSSSSS
valentina_108 [34]

Answer:

x + 12 = -15

x = -18

6 0
3 years ago
14a²b<br> 7a²b<br> =<br> Simplify
lidiya [134]

Step-by-step explanation:

if14a^2b/7a^2b answer is 2

and if the sign is addition then the answer is21a^2b if subtraction answer is7a^2b

4 0
3 years ago
Your teacher has disabled instant marking. Your marks will appear after the due date.
Hatshy [7]

Answer:

263/280 or 0.9

Step-by-step explanation:

if daniel has 17 raffle tickets that mea\ns he has 17 chances of winning. and the question says chance that he wont win

so  

280-17 (out of 280)

=263/280

8 0
3 years ago
Solve for x.
Daniel [21]

Answer:

x=-\frac{9}{4} \\ or \:\\x = -2\frac{1}{4}

Step-by-step explanation:

-2 (x + 1/4)+1=5\\\\-2\left(x+\frac{1}{4}\right)+1=5\\\\\mathrm{Subtract\:}1\mathrm{\:from\:both\:sides}\\\\-2\left(x+\frac{1}{4}\right)+1-1=5-1\\\\Simplify\\-2\left(x+\frac{1}{4}\right)=4\\\\\mathrm{Divide\:both\:sides\:by\:}-2\\\frac{-2\left(x+\frac{1}{4}\right)}{-2}=\frac{4}{-2}\\\\Simplify\\x+\frac{1}{4}=-2\\\\\mathrm{Subtract\:}\frac{1}{4}\mathrm{\:from\:both\:sides}\\\\x+\frac{1}{4}-\frac{1}{4}=-2-\frac{1}{4}\\\\Simplify\\x=-\frac{9}{4}\\\\x = -2\frac{1}{4}

4 0
4 years ago
A rectangle is to be inscribed in an isosceles right triangle in such a way that one vertex of the rectangle is the intersection
svet-max [94.6K]

Answer:

x  =  2  cm

y  = 2  cm

A(max) =  4 cm²

Step-by-step explanation: See Annex

The right isosceles triangle has two 45° angles and the right angle.

tan 45°  =  1  =  x / 4 - y        or     x  =  4  -  y     y  =  4  -  x

A(r)  =  x* y

Area of the rectangle as a function of x

A(x)  =  x  *  (  4  -  x )       A(x)  =  4*x  -  x²

Tacking derivatives on both sides of the equation:

A´(x)  =  4 - 2*x             A´(x)  =  0            4   -  2*x  =  0

2*x  =  4

x  =  2  cm

And  y  =  4  - 2  =  2  cm

The rectangle of maximum area result to be a square of side 2 cm

A(max)  = 2*2  =  4 cm²

To find out if A(x) has a maximum in the point  x  =  2

We get the second derivative

A´´(x)  =  -2           A´´(x)  <  0   then A(x) has a maximum at  x = 2

5 0
3 years ago
Other questions:
  • Identify the vertex for the graph of y = 2x2 + 8x − 3. (2, 21) (2, 17) (−2, −11) (−2, −27)
    7·2 answers
  • How to mark .874 in a graph (picture needed)
    5·1 answer
  • Solve and find answer
    8·1 answer
  • Lin’s uncle is opening a bakery. On the bakery’s grand opening day, he plans to give away prizes to the first 50 customers that
    15·1 answer
  • The function y = x^2 - 4x + 5 approximates the height, y, of a bird, and its
    14·1 answer
  • What is the solution to the inequality (20+5 &gt; 1? 0 -3&gt;n&gt; - 2 02-2 On&lt; 2 or n &gt; 3​
    10·2 answers
  • InWrite the equation of the line that passes through (7, - 4) and (- 1, 2) slope- intercept form.
    12·1 answer
  • Type the correct answer in the box. Use numerals instead of words. If necessary, use / for the fraction bar.
    10·1 answer
  • I need help with this please, i need it fast
    5·1 answer
  • 25 pts plz help!!!!!!!!!!!
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!