Answer:
The correct answer is A) 4/663.
Step-by-step explanation:
First you find the probability of drawing a queen when drawing a single card from a deck of 52 cards. Since there are 4 queens(the queen of diamond, the queen of hearts, the queen of spades, and the queen of clubs) in a deck of 52 cards, the probability of drawing a queen when drawing a single card from a deck of 52 cards is 4/52.
Next you find the probability of drawing a king when drawing a single card from a deck of 51 cards(since you did not replace the first card you drew). Since there are 4 kings(the king of diamond, the king of hearts, the king of spades, and the king of clubs) in a deck of cards, the probability of drawing a king when drawing a single card from a deck of 51 cards is 4/51.
Then you multiply the two probabilities to determine the probability of drawing a queen then a king. So,
4/52 x 4/51 =
4 x 4/52 x 51 =
16/2652
Finally, simplify the fraction. The greatest number that can go into both the numerator and denominator is 4. So divide both the numerator and denominator by 4. When you do this, you get the following:
16 divided by 4 = 4 as the numerator and
2652 divided by 4 = 663 as denominator.
So, the final answer is 4/663.
Answer:
Casey Bought 6 bags of chips
Step-by-step explanation:
If each sandwich costs 3 times the amount of a bag of chips and the sandwich is 6 dollars, the chips are 2 dollars. Casey bought 5 sandwiches and spent $30 dollars on sandwiches. Since the total was $42 dollars you have $12 dollars left to get your total of $42. 2x6 = 12 so therefore Casey bought 6 bags of chips.
<h3>
Answer: n = -11</h3>
=========================================================
Explanation:
Since x-2 is a factor of f(x), this means f(2) = 0.
More generally, if x-k is a factor of p(x), then p(k) = 0. This is a special case of the remainder theorem.
So if we plugged x = 2 into f(x), we'd get
f(x) = x^3+x^2+nx+10
f(2) = 2^3+2^2+n(2)+10
f(2) = 8+4+2n+10
f(2) = 2n+22
Set this equal to 0 and solve for n
2n+22 = 0
2n = -22
n = -22/2
n = -11 is the answer
Therefore, x-2 is a factor of f(x) = x^3+x^2-11x+10
Plug x = 2 into that updated f(x) function to find....
f(x) = x^3+x^2-11x+10
f(2) = 2^3+2^2-11(2)+10
f(2) = 8+4-22+10
f(2) = 0
Which confirms our answer.
Two solutions exist,
2(x - 1) = 8
2x - 2 = 8
2x = 10
x = 5
&
2(x + 1) = 8
2x + 2 = 8
2x = 6
x = 3
the two solutions are 5 and 3