The sixth term of an arithmetic sequence is 6
<h3>How to find arithmetic sequence?</h3>
The sum of the first four terms of an arithmetic sequence is 10.
The fifth term is 5.
Therefore,
sum of term = n / 2(2a + (n - 1)d)
where
- a = first term
- d = common difference
- n = number of terms
Therefore,
n = 4
10 = 4 / 2 (2a + 3d)
10 = 2(2a + 3d)
10 = 4a + 6d
4a + 6d = 10
a + 4d = 5
4a + 6d = 10
4a + 16d = 20
10d = 10
d = 1
a + 4(1) = 5
a = 1
Therefore,
6th term = a + 5d
6th term = 1 + 5(1)
6th term = 6
learn more on sequence here: brainly.com/question/24128922
#SPJ1
Answer:
Image result for State the domain and range in set notation
The domain is the set of all first elements of ordered pairs (x-coordinates). The range is the set of all second elements of ordered pairs (y-coordinates). Only the elements "used" by the relation or function constitute the range. Domain: all x-values that are to be used (independent values).
Step-by-step explanation:
An=a1(r)^(n-1)
a1=first term
r=common rati
common ratio is a term divded by previous term
6/3=2
r=2
first term is 3
an=3(2)^(n-1)
14th term
a14=3(2)^(14-1)
a14=3(2)^13
a14=3(8192)
a14=24576
the 14th term is 24576