Answer:

Step-by-step explanation:
The formula for the length of a vector/line in your case.
![L = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} = \sqrt{[4 - (-1)]^2 + [2 -(-3)]^2} = \sqrt{5^2 + 5^2} = \sqrt{50} = 5\sqrt{2}](https://tex.z-dn.net/?f=L%20%3D%20%5Csqrt%7B%28x_2-x_1%29%5E2%20%2B%20%28y_2-y_1%29%5E2%7D%20%3D%20%5Csqrt%7B%5B4%20-%20%28-1%29%5D%5E2%20%2B%20%5B2%20-%28-3%29%5D%5E2%7D%20%3D%20%5Csqrt%7B5%5E2%20%2B%205%5E2%7D%20%3D%20%5Csqrt%7B50%7D%20%3D%205%5Csqrt%7B2%7D)
Find the Greatest Common Factor (GCF)
<u>GCF = 6y^6</u>
Factor out the GCF. (Write the GCF first. Then, in parenthesis divide each term by the GCF.)
6y^6(24y^8/6y^6 + 6y^6/6y^6)
Simplify each term in parenthesis
<u>6y^6(4y^2 + 1)</u>
Answer:
Below
Step-by-step explanation:
First we combine your first set of terms,
7b^2 + 2b^2 = 9b^2
There's a subtraction hidden in there!
9b^2 - 3b^2 = 6b^2
Next we do the same thing for the second term,
3b + 7b = 10b
but there's a subtraction in the expression!
10b - b = 9b
Then we finish with our third term
6 + 5 = 11
Answer:
6b^2 + 9b + 11
Answer:
(0,0), or A
Step-by-step explanation:
Given the function { x - 3, y - 1 }:

I know that one is obtuse and acute