If the parent graph f(x) = x² is changed to f(x) = 2x², the vertex of the parabola will still remain (0, 0) because whenever the equation of a parabola is in the form y = ax², the vertex will always be (0, 0).
Now if <em>a</em> is a big number, the parabola will become narrower.
So it will stretch vertically and become narrower.
Answer:
1.97-20= -18.03
20-1.97= 18.03
Step-by-step explanation:subtract the numbers from each other.
Answer:
80
Step-by-step explanation:
(5 * 4) = 20
(16 / 8) = 2
(24 - 22) = 2
20 * 2 * 2 = 80
Answer:

General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Differentiate</u>
- [Function] Derivative Rule [Product Rule]:
![\displaystyle f'(x) = \frac{d}{dx}[9x^{10}] \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B9x%5E%7B10%7D%5D%20%5Ctan%5E%7B-1%7D%28x%29%20%2B%209x%5E%7B10%7D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Ctan%5E%7B-1%7D%28x%29%5D)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle f'(x) = 9 \frac{d}{dx}[x^{10}] \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%209%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bx%5E%7B10%7D%5D%20%5Ctan%5E%7B-1%7D%28x%29%20%2B%209x%5E%7B10%7D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Ctan%5E%7B-1%7D%28x%29%5D)
- Basic Power Rule:
![\displaystyle f'(x) = 90x^9 \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%27%28x%29%20%3D%2090x%5E9%20%5Ctan%5E%7B-1%7D%28x%29%20%2B%209x%5E%7B10%7D%20%5Cfrac%7Bd%7D%7Bdx%7D%5B%5Ctan%5E%7B-1%7D%28x%29%5D)
- Arctrig Derivative:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
<span>The mid-point or the number that divides a series of values into two groups of equal numbers of values is referred to as the median. To get the median value, first sort the numbers from highest to lowest or lowest to highest and then pick the middle number. However, for even numbered sets of numbers, take the average of the two middle numbers and the resulting number is the median. </span>