The female sex cells are called the egg and Male sex cells are called the sperm. Hop this helped.
The correct answers are:
- Methylation of histone tails in chromatin can promote condensation of the chromatin.
- DNA is not transcribed when chromatin is packaged tightly in a condensed form.
- Acetylation of histone tails is a reversible process.
- Some forms of chromatin modification can be passed on to future generations of cells.
- Acetylation of histone tails in chromatin allows access to DNA for transcription.
Histone modifications are post-translational modifications of histone protein that can affect gene expression by altering chromatin structure or recruiting histone modifiers.The most common modifications are methylation, phosphorylation, acetylation and ubiquitylation. All of them affect the binding affinity between histones and DNA and thus loosening (gene activation) or tightening (gene repression) the condensed DNA.
Histone methylation is a transfer of methyl group by histone methyltransferases to lysine or arginine amino acid of protein. Effect of methylation depends on the type of protein that is modified. Demethylation is the reverse process.
Histone acetylation is the process of adding of an acetyl group(by histone acetyltransferases) to histone proteins and it can also activate or inhibit the gene expression. Deacetilation is reverse process.
Answer: 1/4
Explanation:
Firstly, in order for both parents to be type A and have children with type o blood, their blood types must both be Ao. Since o is a recessive blood type, a punnett square shows there is a 25% chance any child of theirs will have type o blood. If neither parent is color blind and they have a son who is, it implies that the mother is a carrier of colorblindness and has the genotype XᴮXᵇ. If you do a punnett square of the not colorblind father (XᴮY) and the mother, it shows that a daughter would have a 0% chance of being colorblind. Therefore colorblindess is irrelevent, since there is no possibility of the daughter not having normal color vision. In conclusion, there's a 25% chance she will have type o blood and not be colorblind, since the other 75% chance would be having type A blood and not being colorblind.
Answer:
sorry i just really need the points
Explanation: