F(x)=x⁴-1
f'(x)=4x³
Newton’s Method: x[n+1]=x[n]-f(x[n])/f'(x[n]); x[n+1]=x[n]-(x[n]⁴-1)/4x[n]³
x₁=3.00390625
x₂=2.26215...
x₃=1.7182...
X'=X-(X⁴-1)/4X³=X-X/4+1/4X³ is a symbolic way of writing the recursive formula, where X' represents the next iteration.
When X'≈X, -X/4+1/4X³≈0; so X/4≈1/4X³; X≈1/X³, so X⁴≈1 and X⁴-1≈0. But this is f(x)≈0. Hence Newton’s Method converges to a solution.
The rate of change is x[n+1]-x[n]=-(x[n]⁴-1)/4x[n]³=x[n]/4-1/4x[n]³ or symbolically -X/4+1/4X³.
Note that the method converges to one solution. A different x₀ will possibly converge to the solution x=-1.
One ate 1/3, Another ate = 1/4.
Total ate = 1/3 + 1/4 = (4 + 3) / 12 = 7/12
Fraction the third girl got = (The whole =1) minus 7/12
= 1 - 7/12 = (12 - 7) / 12 = 5/12
The third girl ate 5/12 of the pizza.
Answer:
Two possible solutions
Step-by-step explanation:
we know that
Applying the law of sines

we have



step 1
Find the measure of angle A

substitute the values


The measure of angle A could have two measures
the first measure------->
the second measure ----->
step 2
Find the first measure of angle C
Remember that the sum of the internal angles of a triangle must be equal to
substitute the values
step 3
Find the first length of side c

substitute the values


therefore
the measures for the first solution of the triangle are
, 
, 
, 
step 4
Find the second measure of angle C with the second measure of angle A
Remember that the sum of the internal angles of a triangle must be equal to
substitute the values
step 5
Find the second length of side c

substitute the values


therefore
the measures for the second solution of the triangle are
, 
, 
, 
Answer:
414
Step-by-step explanation: