Answer:
x = 32
Step-by-step explanation:
∠BCA = ∠DBA (90 - ∠DBC)
∠A = ∠A
ΔABD similar to ΔACB
AC/AB = AB/AD
x / 8 = 8 / 2
x = 32
Answer:
Se pueden formar 9 números pares.
Step-by-step explanation:
Dado que con cuatro cartas se pueden formar diferentes números, como por ejemplo 8232 o 3822, para determinar cuántos números pares de cuatro dígitos y diferentes puedes formar con estas cuatro cartas se debe realizar la siguiente tabla:
8232 - 8322 - 8223 = 2 pares 1 impar
2832 - 2823 - 2382 - 2328 - 2283 - 2238 = 4 pares 2 impares
3822 - 3282 - 3228 = 3 pares
Por lo tanto, se pueden formar 9 números pares.
If you look at the graph of y = floor(x), you'll see a stairstep pattern that climbs up as you read from left to right. There are no vertical components to the graph. There are only horizontal components.
The graph is not periodic because the y values do not repeat themselves after a certain x value is passed. For instance, start at x = 0 and go to x = 3. You'll see the y values dont repeat themselves as if a sine function would. If you wanted the function to be periodic, the steps would have to go downhill at some point; however, this does not happen.
Conclusion: The function floor(x) is <u>not</u> periodic.
Problem 1
Domain = {-1, -3, 2, 1}
Range = {5, 0, 2}
The domain is the set of possible inputs and the range is the set of possible outputs. This is a function because each input goes to exactly one output.
========================================
Problem 2
This is a function as well. We do not have any input going to multiple outputs.
Domain = {-2, -3, 5}
Range = {6, 7, 8}
========================================
Problem 3
This is not a function. The input -4 goes to more than one output (outputs 3 and -1 at the same time)
Domain = {-4, -2, 0}
Range = {3, -1, -2, 4}