Answer:
A. The ratio of the number of cups of solution A to the total number of cups of the mixture is 2:3
Step-by-step explanation:
Solution A= 4 cups
Solution B= 2 cups
Total cups of the mixture=4+2=6
A. The ratio of the number of cups of solution A to the total number of cups of the mixture is 2:3.
Solution A= 4 cups
Mixture=6 cups
Solution A : Mixture =4 : 6
=2:3
Option A is true
B. The ratio of the number of cups of solution A to the total number of cups of the mixture is 3:2.
Solution A= 4 cups
Mixture=6 cups
Solution A : Mixture =4 : 6
=2:3
Option B not true
C. There are 3 cups of solution A for every 6 cups of mixture.
Option C states that:
Solution A=3 cups
Mixture=6 cups
Solution A : Mixture=3:6=1:2
This is not true
D. For each cup of solution A, there are 2 cups of solution B.
Option D states:
Solution A= 1 cups
Solution B= 2 cups
This is not true
It is rather
Solution A= 2 cups
Solution B= 1 cups
Therefore, option A. The ratio of the number of cups of solution A to the total number of cups of the mixture is 2:3 is the correct statement
1/6(-y+13)
is the answer
so the third option
Answer:
huh? this doesn't even make sense or I'm just tripib
Step-by-step explanation:
-xoxo
If it is a straight line.
Rewrite the equations of the given boundary lines:
<em>y</em> = -<em>x</em> + 1 ==> <em>x</em> + <em>y</em> = 1
<em>y</em> = -<em>x</em> + 4 ==> <em>x</em> + <em>y</em> = 4
<em>y</em> = 2<em>x</em> + 2 ==> -2<em>x</em> + <em>y</em> = 2
<em>y</em> = 2<em>x</em> + 5 ==> -2<em>x</em> + <em>y</em> = 5
This tells us the parallelogram in the <em>x</em>-<em>y</em> plane corresponds to the rectangle in the <em>u</em>-<em>v</em> plane with 1 ≤ <em>u</em> ≤ 4 and 2 ≤ <em>v</em> ≤ 5.
Compute the Jacobian determinant for this change of coordinates:

Rewrite the integrand:

The integral is then
