1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lubov Fominskaja [6]
3 years ago
13

An experienced maid can clean a room in 30 min. A new maid can clean the same room in 60 min. How long will it take if both maid

s work together?
Mathematics
2 answers:
Scorpion4ik [409]3 years ago
8 0
I think it will take 45 minutes because 30/2 = 15 and 60/2 = 30.
So, 30 + 15 = 45
Pachacha [2.7K]3 years ago
3 0
30+60/2
= 90/2
= 45 mins
You might be interested in
Can an opposite and an absolute value of an integer be the same?
krek1111 [17]

Yes and opposite and an absolute value of an integer will be the same.

8 0
3 years ago
Number 2 I need help on how to solve it
Hunter-Best [27]

Let's simplify the following expression:

\text{ }\frac{\text{ \lparen2x}^4\text{ - y}^6\text{z}^{-4})^2}{\text{ 2x}^2\text{z}^3}\text{ }\cdot\text{ }\frac{\text{ 6x}^5\text{y}^{-4}\text{z}^{-5}}{\text{ \lparen2x}^6\text{y}^3\text{z}^{-3})^2}

We get,

\text{ }\frac{(\text{2x}^4\text{ - y}^6\text{z}^{-4})^2}{\text{ 2x}^2\text{z}^3}\text{ }\cdot\text{  }\frac{6x^5y^{-4}z^{-5}}{(2x^6y^3z^{-3})^2}\text{ }\frac{(2x^4-y^6z^{-4})^2(6x^5y^{-4}z^{-5})}{(2x^2z^3)(2x^6y^3z^{-3})^2}\text{ }\frac{(4x^8\text{ - 4x}^4y^6z^{-4}\text{ + y}^{12}z^{-8})(6x^5y^{-4}z^{-5})}{(2x^2z^3)(4x^{12}y^6z^{-6})}\text{ }\frac{24x^{13}y^{-4}z^{-5}\text{ - 24x}^9y^2z^{-9}\text{ + 6x}^5y^8z^{-13}}{8x^{14}y^6z^{-3}}

4 0
1 year ago
Quarter past 11 Go Math? Lesson 7.10
fredd [130]

Answer:

11:25

Step-by-step explanation:

A quarter equals 25cents past 11.

11:25

6 0
3 years ago
Show ALL your calculations.
Nesterboy [21]

Answer:

<DEB= 125 degrees

Step-by-step explanation:

To get this, you would need to know all 2 angles of the triangle.

To find the first angle, simply do 180-107 to get 73(because supplementary angles add up to 180 degrees).

Next, 180-52(given angle)-73 to get 55 because the 3 angles of a triangle add up to 180(triangle angle sum theory).

You would see that <DEB is part of another supplementary angle so, do 180-55 to get 125.

<DEB=125 degrees.

8 0
3 years ago
Read 2 more answers
Integrate sin^-1(x) dx<br><br> please explain how to do it aswell ...?
Lynna [10]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/2264253

_______________


Evaluate the indefinite integral:

\mathsf{\displaystyle\int\!sin^{-1}(x)\,dx\qquad\quad\checkmark}


Trigonometric substitution:

\mathsf{\theta=sin^{-1}(x)\qquad\qquad\dfrac{\pi}{2}\le \theta\le \dfrac{\pi}{2}}


then,

\begin{array}{lcl} \mathsf{x=sin\,\theta}&\quad\Rightarrow\quad&\mathsf{dx=cos\,\theta\,d\theta\qquad\checkmark}\\\\\\ &&\mathsf{x^2=sin^2\,\theta}\\\\ &&\mathsf{x^2=1-cos^2\,\theta}\\\\ &&\mathsf{cos^2\,\theta=1-x^2}\\\\ &&\mathsf{cos\,\theta=\sqrt{1-x^2}\qquad\checkmark}\\\\\\ &&\textsf{because }\mathsf{cos\,\theta}\textsf{ is positive for }\mathsf{\theta\in \left[\dfrac{\pi}{2},\,\dfrac{\pi}{2}\right].} \end{array}


So the integral \mathsf{(ii)} becomes

\mathsf{=\displaystyle\int\! \theta\,cos\,\theta\,d\theta\qquad\quad(ii)}


Integrate \mathsf{(ii)} by parts:

\begin{array}{lcl} \mathsf{u=\theta}&\quad\Rightarrow\quad&\mathsf{du=d\theta}\\\\ \mathsf{dv=cos\,\theta\,d\theta}&\quad\Leftarrow\quad&\mathsf{v=sin\,\theta} \end{array}\\\\\\\\ \mathsf{\displaystyle\int\!u\,dv=u\cdot v-\int\!v\,du}\\\\\\ \mathsf{\displaystyle\int\!\theta\,cos\,\theta\,d\theta=\theta\, sin\,\theta-\int\!sin\,\theta\,d\theta}\\\\\\ \mathsf{\displaystyle\int\!\theta\,cos\,\theta\,d\theta=\theta\, sin\,\theta-(-cos\,\theta)+C}

\mathsf{\displaystyle\int\!\theta\,cos\,\theta\,d\theta=\theta\, sin\,\theta+cos\,\theta+C}


Substitute back for the variable x, and you get

\mathsf{\displaystyle\int\!sin^{-1}(x)\,dx=sin^{-1}(x)\cdot x+\sqrt{1-x^2}+C}\\\\\\\\ \therefore~~\mathsf{\displaystyle\int\!sin^{-1}(x)\,dx=x\cdot\,sin^{-1}(x)+\sqrt{1-x^2}+C\qquad\quad\checkmark}


I hope this helps. =)


Tags:  <em>integral inverse sine function angle arcsin sine sin trigonometric trig substitution differential integral calculus</em>

6 0
3 years ago
Other questions:
  • If earth equals 120 pounds and Venus equals 109.2 pounds. Write a proportion relating the weights of earth=90pounds, what does.
    8·1 answer
  • Oliver's grandfather invested $150 at 5% interest compounded quarterly. When Oliver inherited it, the amount was $6000. For how
    15·1 answer
  • Can someone help me please help help help please!!! ​
    5·1 answer
  • Which of the following is written in scientific notation correctly?
    6·1 answer
  • PLEASE HELP WILL MARK BRAINLIEST!!
    8·1 answer
  • What is the solution of the system of equations: -2x+8y=-8 and 5x-8y=20​
    6·1 answer
  • I want the answer, Please help me.
    10·1 answer
  • Write an equation of the line with the given y-intercept and the slope in slope-intercept form m=1/3; b=-1
    15·1 answer
  • Tn real estate exam Dan received 7<br> 1questions
    13·1 answer
  • Which is more, 1 pound or 22 ounces?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!