Answer:
i.e. relation between speed-distance-time is one such situation that can be modeled using graph
Step-by-step explanation:
There are many real world examples that can be modeled using graph. Graphs are represented on co-ordinate planes, so any real world example that can be represented by use of linear equation can be represented onto a graph.
One such example, is speed-distance-time relation. Uniform speed can be represented on a graph as shown in figure.
So, the equation for speed is represented by equation as follows:

So, if we take distance on y axis and time on x axis with points as (distance,time)
(0,0) ==> 
(1,2) ==> 
(2,2) ==> 
the following points 0,0.5,1 will be plotted on graph. Similarly, more values can be plotted by assuming values for distance and time.
Answer:
<h2><em>
38°, 66° and 76°</em></h2>
Step-by-step explanation:
A triangle consists of 3 angles and sides. The sum of the angles in a triangle is 180°. Let the angle be <A, <B and <C.
<A + <B + <C = 180° ...... 1
If the measure of one angle is twice the measure of a second angle then
<A = 2<B ...... 2
Also if the third angle measures 3 times the second angle decreased by 48, this is expressed as <C = 3<B-48............ 3
Substituting equations 2 and 3 into 1 will give;
(2<B) + <B + (3<B-48) = 180°
6<B- 48 = 180°
add 48 to both sides
6<B-48+48 = 180+48
6<B = 228
<B = 228/6
<B =38°
To get the other angles of the triangle;
Since <A = 2<B from equation 2;
<A = 2(38)
<A = 76°
Also <C = 3<B-48 from equation 3;
<C = 3(38)-48
<C = 114-48
<C = 66°
<em>Hence the measures of the angles of the triangle are 38°, 66° and 76°</em>
Answer: x = 18
explanation: the two angles are congruent bc so you can set the equation up as 9x - 40 = 5x + 32 and then solve for x
hope this helps :)