<u>Given</u>:
Given that R is a circle.
The length of BC is 5 units.
The length of CE is 12 units.
We need to determine the lengths of AC and CD.
<u>Length of the chord AD:</u>
The lengths of the segments AC and CD can be determined using the intersecting chords theorem.
Applying the theorem, we have;
![AC \cdot CD=BC \cdot CE](https://tex.z-dn.net/?f=AC%20%5Ccdot%20CD%3DBC%20%5Ccdot%20CE)
Substituting the values, we have;
![AC \cdot CD=5 \times 12](https://tex.z-dn.net/?f=AC%20%5Ccdot%20CD%3D5%20%5Ctimes%2012)
![AC \cdot CD=60](https://tex.z-dn.net/?f=AC%20%5Ccdot%20CD%3D60)
Hence, when multiplying the two segments AC and CD, we get 60 units.
Thus, the length of the chord AD is 60 units.
<u>Option F</u>: 6 and 10
The possible lengths of AC and CD can be determined by multiplying the two segments.
Thus, we have;
![AD=AC \cdot CD](https://tex.z-dn.net/?f=AD%3DAC%20%5Ccdot%20CD)
Substituting the values, we have;
![60=6 \times 10](https://tex.z-dn.net/?f=60%3D6%20%5Ctimes%2010)
![60=60](https://tex.z-dn.net/?f=60%3D60)
Thus, the possible lengths of AC and CD are 6 and 10 respectively.
Hence, Option F is the correct answer.
<u>Option G</u>: 8 and 9
Similarly, we have;
![AD=AC \cdot CD](https://tex.z-dn.net/?f=AD%3DAC%20%5Ccdot%20CD)
Substituting the values, we have;
![60=8 \times 9](https://tex.z-dn.net/?f=60%3D8%20%5Ctimes%209)
![60 \neq 72](https://tex.z-dn.net/?f=60%20%5Cneq%2072)
Since, both sides of the equation are not equal, Option G is not the correct answer.
<u>Option H</u>: 7 and 14
Similarly, we have;
![AD=AC \cdot CD](https://tex.z-dn.net/?f=AD%3DAC%20%5Ccdot%20CD)
Substituting the values, we have;
![60=7 \times 14](https://tex.z-dn.net/?f=60%3D7%20%5Ctimes%2014)
![60 \neq 98](https://tex.z-dn.net/?f=60%20%5Cneq%2098)
Since, both sides of the equation are not equal, Option H is not the correct answer.
<u>Option J:</u> 12 and 13
Similarly, we have;
![AD=AC \cdot CD](https://tex.z-dn.net/?f=AD%3DAC%20%5Ccdot%20CD)
Substituting the values, we have;
![60=12 \times 13](https://tex.z-dn.net/?f=60%3D12%20%5Ctimes%2013)
![60 \neq 156](https://tex.z-dn.net/?f=60%20%5Cneq%20156)
Since, both sides of the equation are not equal, Option J is not the correct answer.
Therefore, the possible lengths for segments AC and CD are 6 and 10 respectively.
Hence, Option F is the correct answer.