Answer:
the dependent variable is the factor that will change DEPENDING on the results in the experiment
Explanation:
i didnt see the problem in your question so i hope this helps
Answer:
A sea breeze or onshore breeze is any wind that blows from a large body of water toward or onto a landmass; it develops due to differences in air pressure created by the differing heat capacities of water and dry land. As such, sea breezes are more localised than prevailing winds. Because land absorbs solar radiation far more quickly than water, a sea breeze is a common occurrence along coasts after sunrise. By contrast, a land breeze or offshore breeze is the reverse effect: dry land also cools more quickly than water and, after sunset, a sea breeze dissipates and the wind instead flows from the land towards the sea. Sea breezes and land breezes are both important factors in coastal regions' prevailing winds.[1] The term offshore wind may refer to any wind over open water.
Wind farms are often situated near a coast to take advantage of the normal daily fluctuations of wind speed resulting from sea or land breezes. While many onshore wind farms and offshore wind farms do not rely on these winds, a nearshore wind farm is a type of offshore wind farm located on shallow coastal waters to take advantage of both sea and land breezes. (For practical reasons, other offshore wind farms are situated further out to sea and rely on prevailing winds rather than sea breezes.)
Explanation:
Answer:
The correct answer is glycolysis, the citric acid cycle, and oxidative phosphorylation
Explanation:
Aerobic respiration contains three major processes that are glycolysis, the citric acid cycle, and oxidative phosphorylation.
In glycolysis, partial oxidation of one mole of glucose gives two moles of pyruvate and 2 NADH and 2 ATP. Then this pyruvate is converted into acetyl-CoA in the mitochondrial matrix(in eukaryotes) and acts as a fuel for the Krebs cycle.
In the Krebs cycle, acetyl CoA gives rise to 4 CO₂, 2 ATP, 6 NADH, and 2 FADH₂. So from glycolysis and Krebs cycle, only 4 ATP is produced and most of the energy remains in the form of NADH and FADH₂.
So in oxidative phosphorylation electrons are released from these molecules into machinery of oxidative phosphorylation to synthesize ATP.
The maximum number of amino acid would be 4.
***Remember, 3 codon equals 1 amino acid. It just like 12 divided by 3***
Answer:I think it's ans isB
Explanation:
If you hink my ans has really helped I don't say uave to mark my ans as brainliest but plz don't forget to thank me...