Since lines a and b are perpendicular, that means it is a right angles so angles a+b=90 so they are complementary

<u>the </u><u>given </u><u>expression</u><u> </u><u>can </u><u>be </u><u>solved </u><u>as </u><u>follows </u><u>~</u>

<u>taking </u><u>LCM </u><u>both </u><u>the </u><u>sides </u><u>,</u>

<u>on </u><u>cross </u><u>multiplying </u><u>,</u>

<u>let's</u><u> </u><u>now </u><u>gather </u><u>the </u><u>like </u><u>terms </u><u>at </u><u>either </u><u>sides </u><u>of </u><u>the </u><u>equation</u><u> </u><u>~</u>

<u>on </u><u>simplifying </u><u>the </u><u>equation</u><u> </u><u>,</u>

hope helpful ~
Answer:
it will be on platform 9 3/4
Step-by-step explanation:
Answer:
(mn+n²)/(m+n)
Step-by-step explanation:
probability of blue marble= n/(n+m)
probability of red marble= m/(n+m)
probability that process stops = Probability of both blue + probability of both red= n/(n+m) × n/(n+m) + m/(n+m)×m/(n+m)
= (n²+m²)/(n+m)²
P(1st marbel is blue)= P(blue and red) + P(blue and blue)
= mn/(n+m) + n²/(n+m)
= (mn+n²)/(m+n)
P(1st marble is blue | process stops)= ( (mn+n²)/(m+n)× (n²+m²)/(n+m)²)/ ((n²+m²)/(n+m)²)
= (mn+n²)/(m+n)