All we have to do is multiply the numerator by the other numerator and the denominator by the other denominator.
11•2=22
98•99=9702
They are both even, so we can divide by two with both numbers.
11/4851
4851 can be divided by 11. So we can divide the top and bottom by 11.
1/441 is the product.
The area of a rectangle is A=LW, the area of a square is A=S^2.
W=S-2 and L=2S-3
And we are told that the areas of each figure are the same.
S^2=LW, using L and W found above we have:
S^2=(2S-3)(S-2) perform indicated multiplication on right side
S^2=2S^2-4S-3S+6 combine like terms on right side
S^2=2S^2-7S+6 subtract S^2 from both sides
S^2-7S+6=0 factor:
S^2-S-6S+6=0
S(S-1)-6(S-1)=0
(S-6)(S-1)=0, since W=S-2, and W>0, S>2 so:
S=6 is the only valid value for S. Now we can find the dimensions of the rectangle...
W=S-2 and L=2S-3 given that S=6 in
W=4 in and L=9 in
So the width of the rectangle is 4 inches and the length of the rectangle is 9 inches.
My answer is use a map app like Photomath
Answer:
33%
Step-by-step explanation:
h steps:
Step 1: We make the assumption that 51 is 100% since it is our output value.
Step 2: We next represent the value we seek with $x$.
Step 3: From step 1, it follows that $100\%=51$.
Step 4: In the same vein, $x\%=17$.
Step 5: This gives us a pair of simple equations:
$100\%=51(1)$.
$x\%=17(2)$.
Step 6: By simply dividing equation 1 by equation 2 and taking note of the fact that both the LHS
(left hand side) of both equations have the same unit (%); we have
$\frac{100\%}{x\%}=\frac{51}{17}$
Step 7: Taking the inverse (or reciprocal) of both sides yields
$\frac{x\%}{100\%}=\frac{17}{51}$
$\Rightarrow x=33.33\%$
Therefore, $17$ is $33.33\%$ of $51$.
Answer:
y<-6 and y>10
Step-by-step explanation: