\left[a _{3}\right] = \left[ \frac{ - b^{2}}{6}+\frac{\frac{ - b^{4}}{3}+\left( \frac{-1}{3}\,i \right) \,\sqrt{3}\,b^{4}}{2^{\frac{2}{3}}\,\sqrt[3]{\left( -1296 - 432\,b^{2} - 16\,b^{6}+\sqrt{\left( 1679616+1119744\,b^{2}+186624\,b^{4}+41472\,b^{6}+13824\,b^{8}\right) }\right) }}+\frac{\frac{ - \sqrt[3]{\left( -1296 - 432\,b^{2} - 16\,b^{6}+\sqrt{\left( 1679616+1119744\,b^{2}+186624\,b^{4}+41472\,b^{6}+13824\,b^{8}\right) }\right) }}{24}+\left( \frac{1}{24}\,i \right) \,\sqrt{3}\,\sqrt[3]{\left( -1296 - 432\,b^{2} - 16\,b^{6}+\sqrt{\left( 1679616+1119744\,b^{2}+186624\,b^{4}+41472\,b^{6}+13824\,b^{8}\right) }\right) }}{\sqrt[3]{2}}\right][a3]=⎣⎢⎢⎢⎢⎡6−b2+2323√(−1296−432b2−16b6+√(1679616+1119744b2+186624b4+41472b6+13824b8))3−b4+(3−1i)√3b4+3√224−3√(−1296−432b2−16b6+√(1679616+1119744b2+186624b4+41472b6+13824b8))+(241i)√33√(−1296−432b2−16b6+√(1679616+1119744b2+186624b4+41472b6+13824b8))⎦⎥⎥⎥⎥⎤
Answer:
Step-by-step explanation:
Angle QPR is a central angle. When a central angle intercepts an arc of a circle, the arc and the angle have the same measure. So the minor arc, the one that is less than 180 degrees, will have the same measure as the central angle, 170 degrees.
Answer:
7+7 is 14
Step-by-step explanation:
Right???
Answer:
D) 
Step-by-step explanation:
We have been given four choices.
A) 
B) 
C) 
D) 
Now we need to find about which of the above choices is a sum of cubes.
Basically we need to check which one of the given choices can be represented in cubic form along with addition sign.
3 and 9 can't be written in cubic form unless we use radical numbers.
So the only choice left is D)
D) 


which is clearly visible as sum of cubes.