Moon eclipse is when the moon interposes between the sun and behind the Earth. The moon passes behind the Earth into its umbra and not viceversa! This is possible when the three of them are ALIGNED (in syzygy). In Romania, there was such eclipse that could be seen at an October night last year.
The planetary temperature energy balance is obtained by radiating back the absorbed radiation energy from outer-space, by the planet and thus acquiring thermal equilibrium.
What is the process of attaining thermal equilibrium by Earth?
The Stefan-Boltzmann law states that the more the temperature a planet has, the more it will radiate out to reach thermal equilibrium.
We know that outer space contains large masses of radiative energy freely distributed in its vast expanse. A small fraction of this energy is absorbed by the Earth through the atmosphere, surface land, clouds etc.
Now, radiative balance is achieved when a planet's surface continuously warms up until it reaches its peak at which point the same amount of absorbed energy can then be radiated back to space. The relative amount of energy radiated back by a planet is dependent upon the size of the planet.
A colder planet relatively absorbs lower amount of radiation energy from space. In some time, as the planet heats up enough, the energy is radiated back to the space attaining thermal equilibrium.
Learn more about Stefan-Boltzmann law here:
<u>brainly.com/question/14919749</u>
#SPJ4
Answer:
Velocity, v = 0.239 m/s
Explanation:
Given that,
The distance between two consecutive nodes of a standing wave is 20.9 cm = 0.209 m
The hand generating the pulses moves up and down through a complete cycle 2.57 times every 4.47 s.
For a standing wave, the distance between two consecutive nodes is equal to half of the wavelength.

Frequency is number of cycles per unit time.

Now we can find the velocity of the wave.
Velocity = frequency × wavelength
v = 0.574 × 0.418
v = 0.239 m/s
So, the velocity of the wave is 0.239 m/s.
Answer:
844°C
Explanation:
The problem can be easily solve by using Fick's law and the Diffusivity or diffusion coefficient.
We know that Fick's law is given by,

Where
is the concentration of gradient
D is the diffusivity coefficient
and J is the flux of atoms.
In the other hand we have, that

Where
is the proportionality constant,
R is the gas constant, T the temperature and
is the activation energy.
Replacing the value of diffusivity coefficient in Fick's law we have,

Rearrange the equation to get the value of temperature,

We have all the values in our equation.






Substituting,


