Answer:
aspect of our planet, because first of all this is our home, we should care and preserve it no matter what.
Explanation:
i. Using fossil evidences
ii. Similar rock lithologies at the edges of continent
iii. Climate clues
iv. Fitting of the continents into a puzzle
v. Sea floor spreading
Explanation:
Pangea was a super-continent on the earth which formed about 330 million years ago during the Paleozoic and began breaking up during the early Mesozoic, about 175 million years ago.
Most of the present day continents formed as a result of the separation of the Pangea in the early Mesozoic.
The first scientist to propose the existence of this super-continent was Alfred Wegener in 1912. He suggested the continental drift hypothesis to explain the separation of the land masses.
Today, the theory has been revised to the theory of plate tectonics which provides a better mechanism to understand the drifting of the continents.
Here are some of the evidences to support the existence of Pangea;
- Using fossil evidences: Mesosaurus, a reptile animal that lived during the Permian, was found in both South America and Southern Africa. Since this animal could not swim nor fly, only a jointed landmass could have made them present in both continents.
- Similar rock lithologies at the edges of continents: rock formations at the Western edge of Africa and South - Eastern part of Brazil matches with one another and have been believed to be once joined together.
- Climatic clues such as glacial tills that are confined to temperate and polar regions have been found in tropical regions.
- Wegener fitted the present day continent into a giant supercontinent and this provided a visual support for his claim.
- Evidences from sea floor spreading revealing magnetic reversals at divergent margins suggests the prevalence of plate tectonics i.e moving plates on earth.
This among many other evidences underscores the existence of a supercontinent called Pangea.
Catholics is the most common religion in the U.S
Answer: <u>A metal </u>is rare on Earth but relatively abundant in iron-rich meteorites. It has been found in widespread layers on Earth and it's date of deposition coincides with the major extinction of life on Earth 65 million years ago, possibly indicating a connection between a large impact and this extinction.
Explanation: That metal would be iridium
Can you post a pic so i can answer?