Answer:
What can I do for you
Step-by-step explanation:
Answer:
The probability of finding an average in excess of 4.3 ounces of this ingredient from 100 randomly inspected 1-gallon samples of regular unleaded gasoline = P(x > 4.3) = 0.00621
Step-by-step explanation:
This is a normal distribution problem
The mean of the sample = The population mean
μₓ = μ = 4 ounces
But the standard deviation of the sample is related to the standard deviation of the population through the relation
σₓ = σ/√n
where n = Sample size = 100
σₓ = 1.2/√100
σₓ = 0.12
The probability of finding an average in excess of 4.3 ounces of this ingredient from 100 randomly inspected 1-gallon samples of regular unleaded gasoline = P(x > 4.3)
To do this, we first normalize/standardize the 4.3 ounces
The standardized score for any value is the value minus the mean then divided by the standard deviation.
z = (x - μ)/σ = (4.3 - 4)/0.12 = 2.5
To determine the probability of finding an average in excess of 4.3 ounces of this ingredient from 100 randomly inspected 1-gallon samples of regular unleaded gasoline = P(x > 4.3) = P(z > 2.5)
We'll use data from the normal probability table for these probabilities
P(x > 4.3) = P(z > 2.5) = 1 - P(z ≤ 2.5) = 1 - 0.99379 = 0.00621
Answer:
A. (3,-4)
Step-by-step explanation:
if we reflect on the x axis, the y changes
if we reflect on the y axis, the x changes
-2z^2+5z-5; Quadratic trinomial, 3 terms
M AR = 55°
m RB = 66°
Like AB=8 m =RS →m RS = m AB
m AB = m AR + m RB
m AB = 55° + 66°
m AB = 121°
m RS = m AB
M RS = 121°
Answer: m RS is 121°