A negative balance of money could represent debt or money owed.
<em>I</em><em> </em><em>think</em><em> </em><em>the</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>rectangle</em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em>
1. Given any triangle ABC with sides BC=a, AC=b and AB=c, the following are true :
i) the larger the angle, the larger the side in front of it, and the other way around as well. (Sine Law) Let a=20 in, then the largest angle is angle A.
ii) Given the measures of the sides of a triangle. Then the cosines of any of the angles can be found by the following formula:

2.

3. m(A) = Arccos(-0.641)≈130°,
4. Remark: We calculate Arccos with a scientific calculator or computer software unless it is one of the well known values, ex Arccos(0.5)=60°, Arccos(-0.5)=120° etc
if you want to come bird 5 pints to 3 quarts it's 2.5 quarts
Answer:
60 minutes
Step-by-step explanation:
Let the number of minutes be represented as x
For Plan A
Plan A charges $35 plus $0.25 per minute for calls.
$35 + $0.25 × x
35 + 0.25x
For Plan B
Plan B charges $20 plus $0.50 per minute for calls.
$20 + $0.50 × x
20 + 0.50x
For what number of minutes do both plans cost the same amount?
This is calculated by equating Plan A to Plan B
Plan A = Plan B
35 + 0.25x = 20 + 0.50x
Collect like terms
35 - 20 = 0.50x - 0.25x
15 = 0.25x
x = 15/0.25
x = 60 minutes.
Hence, the number of minutes that both plans cost the same amount is 60 minutes