Solve the absolute value equation.
First subtract 5 from both sides.
|x|+5=18
|x|=13
If the absolute value of x is 13 that x equals 13 and -13. Absolute value means distance from 0.
x=13,-13
We know that 5 fits entirely into our number three times, and then there's a remainder of 4.
If 5 fits three times exactly, it means that our number is at least 15 (5x3).
From here, we have a remainder of 4, which leads to 15+4=19
1. A in some part is correct, but the triangles are indeed correct, and the argument is for HL, so the answer is C
2. Are congruent by SSS (both shares a side).
Answer:
Systolic on right

Systolic on left

So for this case we have more variation for the data of systolic on left compared to the data systolic on right but the difference is not big since 0.170-0.147 = 0.023.
Step-by-step explanation:
Assuming the following data:
Systolic (#'s on right) Diastolic (#'s on left)
117; 80
126; 77
158; 76
96; 51
157; 90
122; 89
116; 60
134; 64
127; 72
122; 83
The coefficient of variation is defined as " a statistical measure of the dispersion of data points in a data series around the mean" and is defined as:

And the best estimator is 
Systolic on right
We can calculate the mean and deviation with the following formulas:
[te]\bar x = \frac{\sum_{i=1}^n X_i}{n}[/tex]

For this case we have the following values:

So then the coeffcient of variation is given by:

Systolic on left
For this case we have the following values:

So then the coeffcient of variation is given by:

So for this case we have more variation for the data of systolic on left compared to the data systolic on right but the difference is not big since 0.170-0.147 = 0.023.
The statement to this question is true this is true