1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
horrorfan [7]
3 years ago
6

Ln(x + 1) − ln(2) = 1

Mathematics
1 answer:
KonstantinChe [14]3 years ago
8 0

Answer:

The answer to your question is: x = 4.44

Step-by-step explanation:

Data

                                          ln(x + 1) − ln(2) = 1

                                          In (x + 1)/2 = 1

                                          (x + 1) / 2 = e¹      

                                          x + 1 = 2 (2.7183)

                                          x = 5.44 - 1

                                          x = 4.44        

You might be interested in
Use the given graph to determine the limit, if it exists. A
Dmitriy789 [7]
Check the picture below.

4 0
3 years ago
In the table, each value of y varies directly with the corresponding value of x. Which equation represents the values in the tab
Alex777 [14]
Your equation should be
y=2.2x
6 0
2 years ago
A shop owner wants to market a new vest. The vest distributor will charge a reduced price for one size of the owner’s choice. Th
AlladinOne [14]
The answer is 44 because the definition of Mode is the number that appears the most. The correct answer is A
7 0
3 years ago
Find the diameter of a circle that has an area of 254.34mm2
zvonat [6]
To find the diameter, divide the area(254.34) by pi(3.1415) and then square the quotient

\frac{254.34}{3.1415} =  80.95
\sqrt{80.95} = 8.99
That is the radius now just times that by 2 so 2 x 8.99 = 17.98

Now I have a felling the might be wanting 18 because 8.99 is so close to 9 and this is also true for 80.95. They probably want 80.95 = 81, which the square root of that is 9, which is the radius and if you times that by 2 the diameter would equal 18
5 0
3 years ago
.. Which of the following are the coordinates of the vertices of the following square with sides of length a?
atroni [7]

Option A: O(0,0), S(0,a), T(a,a), W(a,0)

Option D: O(0,0), S(a,0), T(a,a), W(0,a)

Step-by-step explanation:

Option A: O(0,0), S(0,a), T(a,a), W(a,0)

To find the sides of a square, let us use the distance formula,

d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}

Now, we shall find the length of the square,

\begin{array}{l}{\text { Length } O S=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } S T=\sqrt{(a-0)^{2}+(a-a)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } T W=\sqrt{(a-a)^{2}+(0-a)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } O W=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a}\end{array}

Thus, the square with vertices O(0,0), S(0,a), T(a,a), W(a,0) has sides of length a.

Option B: O(0,0), S(0,a), T(2a,2a), W(a,0)

Now, we shall find the length of the square,

\begin{aligned}&\text { Length } O S=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\\&\text {Length } S T=\sqrt{(2 a-0)^{2}+(2 a-a)^{2}}=\sqrt{5 a^{2}}=a \sqrt{5}\\&\text {Length } T W=\sqrt{(a-2 a)^{2}+(0-2 a)^{2}}=\sqrt{2 a^{2}}=a \sqrt{2}\\&\text {Length } O W=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a\end{aligned}

This is not a square because the lengths are not equal.

Option C: O(0,0), S(0,2a), T(2a,2a), W(2a,0)

Now, we shall find the length of the square,

\begin{array}{l}{\text { Length OS }=\sqrt{(0-0)^{2}+(2 a-0)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } S T=\sqrt{(2 a-0)^{2}+(2 a-2 a)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } T W=\sqrt{(2 a-2 a)^{2}+(0-2 a)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } O W=\sqrt{(2 a-0)^{2}+(0-0)^{2}}=\sqrt{4 a^{2}}=2 a}\end{array}

Thus, the square with vertices O(0,0), S(0,2a), T(2a,2a), W(2a,0) has sides of length 2a.

Option D: O(0,0), S(a,0), T(a,a), W(0,a)

Now, we shall find the length of the square,

\begin{aligned}&\text { Length OS }=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } S T=\sqrt{(a-a)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } T W=\sqrt{(0-a)^{2}+(a-a)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } O W=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\end{aligned}

Thus, the square with vertices O(0,0), S(a,0), T(a,a), W(0,a) has sides of length a.

Thus, the correct answers are option a and option d.

8 0
3 years ago
Other questions:
  • Which in quality provides X the number of miles he could afford to drive if he were to rent a car from the company
    10·1 answer
  • Which of the following is not a characteristic of non-Euclidean geometry?
    13·1 answer
  • Which expression below has a coefficient of 3?
    13·2 answers
  • 76/135 in simplest form
    5·1 answer
  • -8<br><img src="https://tex.z-dn.net/?f=%20-%208%20%5Cgeqslant%203%20%2B%20h2" id="TexFormula1" title=" - 8 \geqslant 3 + h2" al
    5·1 answer
  • When a discriminant is a negative number the quadratic has no real zeros. True or False?
    7·1 answer
  • Who won the race between the two balls of string
    15·1 answer
  • A cube has sides with a length of 1/3 cm. What is its volume?
    7·2 answers
  • 2
    11·1 answer
  • What is the volume of this pyramid
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!