Answer:
The equations shows a difference of squares are:
<u>10y²- 4x²</u> $ <u>6y²- x²</u>
Step-by-step explanation:
the difference of two squares is a squared number subtracted from another squared number, it has the general from Ax² - By²
We will check the options to find which shows a difference of squares.
1) 10y²- 4x²
The expression is similar to the general form, so the equation represents a difference of squares.
It can be factored as (√10 y + 2x )( √10 y - 2x)
2) 6y²- x²
The expression is similar to the general form, so the equation represents a difference of squares.
It can be factored as (√6y + x )( √6y - x)
3) 8x²−40x+25
The expression is not similar to the general form, so the equation does not represent a difference of squares.
4) 64x²-48x+9
The expression is not similar to the general form, so the equation does not represent a difference of squares.
Answer:
0.4 would represent the strongest correlation.
Step-by-step explanation:
Generally, a value of r greater than 0.7 is considered a strong correlation. Anything between 0.5 and 0.7 is a moderate correlation, and anything less than 0.4 is considered a weak or no correlation
11. y = -23x - 21
You can get this by starting with y = mx + b (slope intercept form). Then put in all the knowns and solve for the b.
2 = -23(-1) + b
2 = 23 + b
-21 = b
Then add that to the end of the equation with m = -23
12. -5
The y-intercept of an equation is always the number added on at the end of an equation. It is also the number with no x attached to it.
13. 8x^9y^6
When you use the law of exponents, you need to make sure the exponent goes to each individual term. When we cube the 2, it becomes 8. When you cube x^3, you get x^3*x^3*x^3 or x^9. And with y^2 you get y^6
8,000 inches wider than nick' s computer screen. Hope I helped!:)
Answer:
Step-by-step explanation:
Time taken to drive to work = 1 hr
Time taken to drive home = 1 hr
Time taken to drive from home to work and back home again ( IN ONE DAY)
=1 + 1 = 2hrs
So time taken for driving to and from work for 5 days = 2hrs × 5 days = 10 hrs .