1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks [24]
3 years ago
9

Determine the moment of inertia Ixx of the mallet about the x-axis. The density of the wooden handle is 860 kg/m3 and that of th

e soft-metal head is 8000 kg/m3. The longitudinal axis of the cylindrical head is normal to the x-axis. Assume that the handle does not penetrate the head.

Physics
1 answer:
Yuki888 [10]3 years ago
8 0

Complete Question

Diagram for this  shown on the first uploaded image

Answer:

The moment of inertia Ixx of the mallet about the x-axis is I{xx}= 0.119 kg \cdot m^2

Explanation:

From the question we are told that

        The density `of wooden handle is  \rho_w = 860 kg/m^3

        The density `of soft-metal head  is \rho_s =8000kg/m^3

Generally the mass of the wooden can be mathematically obtained with this formula

          m_w = \rho_w A_w l_w

Where A_w is mass of wooden handle which is  mathematically obtain with the formula

             A_w = \frac{\pi}{4} d^2_w

Where d_w is the diameter  of the wooden handle which from the diagram is

       27mm = \frac{27}{1000} = 0.027m

So  A_w = \frac{\pi}{4} * 0.027^2

      l_w is the length of the the wooden handle which is given in the diagram as   l_w = 315mm = \frac{315}{1000} = 0.315m

Substituting these value into the formula for mass

      m_w = 860 * (\frac{\pi}{4} * 0.027^2 ) *0.315

            = 0.155kg

Generally the mass of the soft-metal head can be mathematically obtained with this formula

           m_s = \rho_s A_s l_s

Where A_s is mass of soft-metal head which is  mathematically obtain with the formula

            A_s = \frac{\pi}{4} d^2_s

Where d_s is the diameter  of the soft-metal head which from the diagram is            

       36mm = \frac{36}{1000} = 0.036m

So  A_s = \frac{\pi}{4} * 0.036^2

 l_s is the length of the the soft-metal head which is given in the diagram

     as   l_s = 90mm = \frac{90}{1000} = 0.090m

Substituting these value into the formula for mass  

                  m_s = 8000 * (\frac{\pi}{4} * 0.036^2 ) *0.090

                       =0.733kg

Generally the mass moment of inertia about x-axis for the wooden handle is

                  (I_{xx})_w  =    [\frac{1}{3}m_w + l_w^2 ]  

Substituting values

                   (I_{xx})_w  =    [\frac{1}{3}*0.155 + 0.315^2 ]

                              =5.12*10^{-3}kg \cdot m^2  

Generally the mass moment of inertia about x-axis for the soft-metal head is

    (I_{xx})_s = [\frac{1}{12}m_s l_s ^2 + b^2]

Where b is the distance from the centroid to the axis of the head which is mathematically given as

                   b=l_w +\frac{d_s}{2}

Substituting values

                 b = 0.315 + \frac{0.036}{2}

                    = 0.336m

Now substituting values into the formula for mass moment of inertia about x-axis for soft-metal head

                            (I_{xx})_s = [\frac{1}{12} *0.733*  0.090^2 + 0.336^2]

                                      =0.113 kg \cdot m^2

Generally the mass moment of inertia about x-axis is mathematically represented as

         I_{xx} = (I_{xx})_w + (I_{xx})_s

                = [\frac{1}{3}m_w + l_w^2 ] + [\frac{1}{12}m_s l_s ^2 + b^2]

Substituting values

        I_{xx} = 5.12*10^{-3} +0.113

               I{xx}= 0.119 kg \cdot m^2

             

             

You might be interested in
A Christmas light is made to flash via the discharge of a capacitor. The effective duration of the flash is 0.25 s (which you ca
Sonbull [250]

Answer:

The correct solution is:

(a) 1.375\times 10^{-2} \ J

(b) 4.43\times 10^{-3} \ C

(c) 1.42\times 10^{-3} \ F

(d) 178.57 \ \Omega

Explanation:

The given values are:

Effective duration of the flash,

ζ = 0.25 s

Average power,

P_{avg}=55 \ mW

       =55\times 10^{-3} \ W

Average voltage,

V_{avg}=3.1 \ V

Now,

(a)

⇒ E=P_{avg}\times \zeta

On substituting the values, we get

⇒     =55\times 10^{-3}\times 0.25

⇒     =1.375\times 10^{-2} \ J

(b)

⇒ E=Q\times V_{avg}

then,

⇒ Q=\frac{E}{V_{avg}}

On substituting the values, we get

⇒     =\frac{1.375\times 10^{-2}}{3.1}

⇒     =4.43\times 10^{-3} \ C

(c)

⇒ C=\frac{Q}{V}

⇒     =\frac{4.43\times 10^{-3}}{3.1}

⇒     =1.42\times 10^{-3} \ F

(d)

As we know,

⇒ R=\frac{1}{4C}

⇒     =\frac{1}{4\times 1.42\times 10^{-3}}

⇒     =\frac{1000}{5.6}

⇒     =178.57 \ \Omega

5 0
3 years ago
Which statement best describes the type of magnetism generated by attaching a wire to a battery and wrapping the wire around an
Mazyrski [523]
It only occurs when there is an electric current
4 0
3 years ago
In a double-slit experiment, light from two monochromatic light sources passes through the same double slit. The light from the
PtichkaEL [24]

Answer:

533.33 nm

Explanation:

Since dsinθ = mλ  for each slit, where m = order of slit and λ = wavelength of light. Let m' = 10 th order fringe of the first slit of wavelength of light, λ = 640 nm and m"= 12 th order fringe of the second slight of wavelength of light, λ'.

Since the fringes coincide,

m'λ = m"λ'

λ' = m'λ/m"

= 10 × 640 nm/12

= 6400 nm/12

= 533.33 nm

8 0
3 years ago
A 10n falling object encounters 4n of air resistance. what is the net force on the object?
Margaret [11]
It would be 6n down.
5 0
3 years ago
If you weighed 130 pounds on earth, you would weigh _____pounds on the moon
Aneli [31]

Answer:

152 pounds

Explanation:

4 0
3 years ago
Other questions:
  • This chart shows the global temperature anomaly (the difference of the expected temperature and the actual temperature) over a s
    8·2 answers
  • 5.5g of carbon dioxide is dissolved into 150 mL of coke. Which substance represents the solvent
    12·1 answer
  • Spinning situations???
    13·2 answers
  • A tire placed on a balancing machine in a service station starts from rest and turns through 4.0 rev in 1.0 s before reaching it
    15·2 answers
  • White light, with frequencies ranging from 4.00 x 10^14 Hz to 7.90 x 10^14 Hz, is incident on a barium surface. Given that the w
    8·1 answer
  • Which of these objects has the greatest inertia?
    9·1 answer
  • A more powerful engine means a plane will have a
    13·1 answer
  • Please help its for science
    12·2 answers
  • Please help I’ll make u brainliest please
    5·1 answer
  • How do you calculate the change in speed?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!