Answer:
Step-by-step explanation:
For the null hypothesis,
µ = 60
For the alternative hypothesis,
h1: µ < 60
This is a left tailed test
Since the population standard deviation is not given, the distribution is a student's t.
Since n = 100,
Degrees of freedom, df = n - 1 = 100 - 1 = 99
t = (x - µ)/(s/√n)
Where
x = sample mean = 52
µ = population mean = 60
s = samples standard deviation = 22
t = (52 - 60)/(22/√100) = - 3.64
We would determine the p value using the t test calculator. It becomes
p = 0.00023
We would reject the null hypothesis if α = 0.05 > 0.00023
From the graph, when x = 1, y = 57,000.
Replace x with 1 in the equations and see if any of the Y 's equal 57,000 :
y = -2610.82(1) + 47860.82 = 45,250
y = 219(1)^2 - 6,506.78(1) + 59,385 = 219 - 6506.78 + 59385 = 53,097.22
y = 54041.5(0.9)^1 = 48,637.35
y = 10,504.6 (1.1)^1 = 11,555.06
The second equation is the closest. so try another x value to see if it is close to the Y value:
Let's try x = 14:
y = 219(14)^2 - 6506.78(14) + 59,385 = 42924 - 91094.92 + 59385 = 11,214.08
This is close to Y = 12,00 shown on the graph
SO the closest equitation is y = 219x^2 - 6506.78x + 59385
Answer:
option 3 = 3.75
Step-by-step explanation:
x is 3.75
.
Weetuoplkhgdaaxvmnvcdawrwtwvebrjtilpoolwnavaccaoqoqiyteqaddghjlknbczwdxdyvnuonl