The terms of an arithmetic sequence are generated by adding a fixed term
every time.
So, we start with
, and we continue with
,
and so on.
As you can see, the general rule is 
With this information, we can derive
, knowing that

So, the sum of the first 100 terms is
![[tex]\displaystyle \sum_{i=0}^{99} 15+i\dfrac{292}{99} = \displaystyle \sum_{i=0}^{99} 15 + \displaystyle \dfrac{292}{99}\sum_{i=0}^{99} i = (15\cdot 99) + \dfrac{292}{99}\dfrac{99\cdot 100}{2} = 1485 + \dfrac{490342}{99}](https://tex.z-dn.net/?f=%5Btex%5D%5Cdisplaystyle%20%5Csum_%7Bi%3D0%7D%5E%7B99%7D%2015%2Bi%5Cdfrac%7B292%7D%7B99%7D%20%3D%20%5Cdisplaystyle%20%5Csum_%7Bi%3D0%7D%5E%7B99%7D%2015%20%2B%20%5Cdisplaystyle%20%5Cdfrac%7B292%7D%7B99%7D%5Csum_%7Bi%3D0%7D%5E%7B99%7D%20i%20%3D%20%2815%5Ccdot%2099%29%20%2B%20%5Cdfrac%7B292%7D%7B99%7D%5Cdfrac%7B99%5Ccdot%20100%7D%7B2%7D%20%3D%201485%20%2B%20%5Cdfrac%7B490342%7D%7B99%7D)