I haven't learned antiderivitives yet but I can try to logic it
<span>First find f′ and then find f. f′′(x)=3x^3+6x^2−x+2, f′(1)=9, f(1)=−7.
we reverse chain rule
3x^3, we know that it was a 4th degree thing, and the coefient is 3, so
4*what=3?, answer is 3/4
3/4x^4
6x^2
we know it was x^3, and the coefient is now 6 so
3*what=6? what=2
2x^3
-1x, the power was 2 and coefient is now -1, so
2 times what=-1?, -1/2
-1/2x^2
2, that is from 2x
so
</span>
<span>3/4x^4+2x^3-1/2x^2+2x=f'(x)
test x=1
(3/4)(1)+2(1)-(1/2)(1)+2(1)=
3/4+2-2/4+2=
4 and 1/4 we need to get it to 9
4 and 1/4 +what=9
answer is 4 and 3/4
so we add that to the end since it will become 0 from derivitive
</span>
<span>f'(x)=3/4x^4+2x^3-1/2x^2+2x+4 and 3/4
now reverse drivitive again
3/4x^4
exponent is 5 and coefient is 3/4
5 times what=3/4? answer is 3/20
3/20x^5
2x^3
exponent should be 4 and coefient is 2
4 times what=2? answer is 1/2
1/2x^4
-1/2x^2
exponent should be 3 and coefient is -1/2
3 times what=-1/2? answer is -1/6
-1/6x^3
2x
exponent should be 2 and coefient is 2
2 times what=2? answer is 1
1x^2
4 and 3/4 turns to (4 and 3/4)x
</span>
<span>f(x)=3/20x^5+1/2x^4-1/6x^3+x^2+(4 and 3/4)x
try evaluating it for x=1
f(1)=(3/20)+(10/20)-(10/50)+1+(19/4)
f(1)=6 and 7/30
what do we add to get -7
-13 and 7/30
</span>
<span><span>f(x)=3/20x^5+1/2x^4-1/6x^3+x^2+(4 and 3/4)x-13 and 7/30
</span>
</span>ANSWER
<span>f'(x)=3/4x^4+2x^3-1/2x^2+2x+19/4
</span><span>f(x)=3/20x^5+1/2x^4-1/6x^3+x^2+19/4x-187/30</span>
Answer:
7 hours and 9 minutes
Step-by-step explanation:
4 hours and 33 minutes is 273 minutes
7 m/s —> 273 minutes
11 m/s —> M
Criss cross to get M
11x273= 7M
3003=7M
M=429 minutes
==> 429 minutes is 7 hours and 9 minutes
I believe it’s A because if you notice the rate of population grow was in the 20,000s for the US in the 1840s, while NC was hitting 600 free people at that time.
The median is a halfway point in the set of data.
List the numbers in order from smallest to largest:
111, 129, 144, 149, 152, 162, 166, 171
Because there are an even number of values in the data set, find the two middle numbers, add them together and then divide by 2:
Median = ( 149 + 152 ) /2
Median = 150.5