Answer:
<em>Expected number of students would have a driver's license = 6</em>
Step-by-step explanation:
<u><em>Explanation</em></u>:-
Given data In a class of 25 students, 15 of them have a driver's license
The sample proportion
![p = \frac{x}{n} = \frac{15}{25} = 0.6](https://tex.z-dn.net/?f=p%20%3D%20%5Cfrac%7Bx%7D%7Bn%7D%20%3D%20%5Cfrac%7B15%7D%7B25%7D%20%3D%200.6)
Let 'X' be the binomial distribution
Given sample size 'n' = 10
<em>mean of the binomial distribution or expected number of students would have a driver's license</em>
μ = n p
= 10 × 0.6
= 6
<u><em>Conclusion</em></u>:-
<em>Expected number of students would have a driver's license = 6</em>