Using the speed - distance relationship, the time left before the appointed time is 27 minutes.
<u>Recall</u><u> </u><u>:</u>
<u>At</u><u> </u><u>10mph</u><u> </u><u>:</u>
- Distance = 10 × (t + 3) = 10t + 30 - - - (1)
<u>At</u><u> </u><u>12</u><u> </u><u>mph</u><u> </u><u>:</u>
- Distance = 12 × (t - 2) = 12t - 24 - - - - (2)
<em>Equate</em><em> </em><em>(</em><em>1</em><em>)</em><em> </em><em>and</em><em> </em><em>(</em><em>2</em><em>)</em><em> </em><em>:</em>
10t + 30 = 12t - 24
<em>Collect</em><em> </em><em>like</em><em> </em><em>terms</em><em> </em>
10t - 12t = - 24 - 30
-2t = - 54
<em>Divide</em><em> </em><em>both</em><em> </em><em>sides</em><em> </em><em>by</em><em> </em><em>-</em><em> </em><em>2</em>
t = 54 / 2
t = 27
Hence, the time left before the appointed time is 27 minutes.
Learn more : brainly.com/question/25669152
Answer:
t = -24*log(2/3)
Step-by-step explanation:
The expression is:
V = 22,500*10^(-t/12)
Replacing with V = 10,000 and isolating t, we get:
10,000 = 22,500*10^(-t/12)
10,000/22,500 = 10^(-t/12)
4/9 = 10^(-t/12)
(2/3)² = 10^(-t/12)
2*log(2/3) = -t/12
-12*2*log(2/3) = t
t = -24*log(2/3)
Answer:
y = -4/3x + 6
Step-by-step explanation:
1. 3y - 4x + 3y = 18 - 3y
2. 4x = -3y + 18
3. 18 - 4x = -3y + 18 - 18
4. <u>-</u><u>3</u><u>/</u><u> </u><u>-3y = 4x - 18</u><u> </u><u>/</u><u>3</u>
5. y = -4/3x + 6
Answer:
The square root of 600 is 24.49489743
Step-by-step explanation:
Answer:
97.5735
Step-by-step explanation: