Answer:
For this case if we want to conclude that the sample does not come from a normally distributed population we need to satisfy the condition that the sample size would be large enough in order to use the central limit theoream and approximate the sample mean with the following distribution:

For this case the condition required in order to consider a sample size large is that n>30, then the best solution would be:
n>= 30
Step-by-step explanation:
For this case if we want to conclude that the sample does not come from a normally distributed population we need to satisfy the condition that the sample size would be large enough in order to use the central limit theoream and approximate the sample mean with the following distribution:

For this case the condition required in order to consider a sample size large is that n>30, then the best solution would be:
n>= 30
Answer:
d = 5,35 ft
Step-by-step explanation: See annex
Figure in annex is clear,
sin ∠42⁰ = d / 8
And
sin ∠42⁰ = 0.669
d/8 = 0,669
d = 0,669*8
d = 5,35 ft
Answer:
a=3,b=5
Step-by-step explanation:

so as you got it:

Assume:
Size of sides = x m
Depth of the pool = y m
Therefore, surface area = x^2+4xy =10 m^2
Then, y = (10-x^2)/(4x)
Now,
Volume (V) = x^2*y = x^2*y =x^2(10-x^2)/4x = (10x-x^3)/4 = 1/4(10x-x^3)
For maximum volume, first derivative of volume function is equal to zero.
That is,
dV/dx =0 = 1/4(10-3x^2)
Then,
1/4(10-3x^2) = 0
10-3x^2 = 0
3x^2=10
x= sqrt (10/3) = 1.826 m
And
y= (10-1.826^2)/(4*1.826) = 0.913 m
Therefore,
V= 1.826^2*0.913 = 3.044 m^3